These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 38410114)
1. Mammography with deep learning for breast cancer detection. Wang L Front Oncol; 2024; 14():1281922. PubMed ID: 38410114 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence-Powered Mammography: Navigating the Landscape of Deep Learning for Breast Cancer Detection. Al Muhaisen S; Safi O; Ulayan A; Aljawamis S; Fakhoury M; Baydoun H; Abuquteish D Cureus; 2024 Mar; 16(3):e56945. PubMed ID: 38665752 [TBL] [Abstract][Full Text] [Related]
3. Recent advancements in artificial intelligence for breast cancer: Image augmentation, segmentation, diagnosis, and prognosis approaches. Zhang J; Wu J; Zhou XS; Shi F; Shen D Semin Cancer Biol; 2023 Nov; 96():11-25. PubMed ID: 37704183 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Geras KJ; Mann RM; Moy L Radiology; 2019 Nov; 293(2):246-259. PubMed ID: 31549948 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. Schaffter T; Buist DSM; Lee CI; Nikulin Y; Ribli D; Guan Y; Lotter W; Jie Z; Du H; Wang S; Feng J; Feng M; Kim HE; Albiol F; Albiol A; Morrell S; Wojna Z; Ahsen ME; Asif U; Jimeno Yepes A; Yohanandan S; Rabinovici-Cohen S; Yi D; Hoff B; Yu T; Chaibub Neto E; Rubin DL; Lindholm P; Margolies LR; McBride RB; Rothstein JH; Sieh W; Ben-Ari R; Harrer S; Trister A; Friend S; Norman T; Sahiner B; Strand F; Guinney J; Stolovitzky G; ; Mackey L; Cahoon J; Shen L; Sohn JH; Trivedi H; Shen Y; Buturovic L; Pereira JC; Cardoso JS; Castro E; Kalleberg KT; Pelka O; Nedjar I; Geras KJ; Nensa F; Goan E; Koitka S; Caballero L; Cox DD; Krishnaswamy P; Pandey G; Friedrich CM; Perrin D; Fookes C; Shi B; Cardoso Negrie G; Kawczynski M; Cho K; Khoo CS; Lo JY; Sorensen AG; Jung H JAMA Netw Open; 2020 Mar; 3(3):e200265. PubMed ID: 32119094 [TBL] [Abstract][Full Text] [Related]
6. Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence. Tran WT; Sadeghi-Naini A; Lu FI; Gandhi S; Meti N; Brackstone M; Rakovitch E; Curpen B Can Assoc Radiol J; 2021 Feb; 72(1):98-108. PubMed ID: 32865001 [TBL] [Abstract][Full Text] [Related]
7. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Lotter W; Diab AR; Haslam B; Kim JG; Grisot G; Wu E; Wu K; Onieva JO; Boyer Y; Boxerman JL; Wang M; Bandler M; Vijayaraghavan GR; Gregory Sorensen A Nat Med; 2021 Feb; 27(2):244-249. PubMed ID: 33432172 [TBL] [Abstract][Full Text] [Related]
8. The application of traditional machine learning and deep learning techniques in mammography: a review. Gao Y; Lin J; Zhou Y; Lin R Front Oncol; 2023; 13():1213045. PubMed ID: 37637035 [TBL] [Abstract][Full Text] [Related]
9. Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms. Sahu A; Das PK; Meher S Phys Med; 2023 Oct; 114():103138. PubMed ID: 37914431 [TBL] [Abstract][Full Text] [Related]
10. Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Burt JR; Torosdagli N; Khosravan N; RaviPrakash H; Mortazi A; Tissavirasingham F; Hussein S; Bagci U Br J Radiol; 2018 Sep; 91(1089):20170545. PubMed ID: 29565644 [TBL] [Abstract][Full Text] [Related]
11. Applying Deep Learning for Breast Cancer Detection in Radiology. Mahoro E; Akhloufi MA Curr Oncol; 2022 Nov; 29(11):8767-8793. PubMed ID: 36421343 [TBL] [Abstract][Full Text] [Related]
12. Advancements in Oncology with Artificial Intelligence-A Review Article. Vobugari N; Raja V; Sethi U; Gandhi K; Raja K; Surani SR Cancers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267657 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Gastounioti A; Desai S; Ahluwalia VS; Conant EF; Kontos D Breast Cancer Res; 2022 Feb; 24(1):14. PubMed ID: 35184757 [TBL] [Abstract][Full Text] [Related]
14. Deep Learning-Based Artificial Intelligence for Mammography. Yoon JH; Kim EK Korean J Radiol; 2021 Aug; 22(8):1225-1239. PubMed ID: 33987993 [TBL] [Abstract][Full Text] [Related]
15. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Din NMU; Dar RA; Rasool M; Assad A Comput Biol Med; 2022 Oct; 149():106073. PubMed ID: 36103745 [TBL] [Abstract][Full Text] [Related]
16. Enhanced breast mass mammography classification approach based on pre-processing and hybridization of transfer learning models. Boudouh SS; Bouakkaz M J Cancer Res Clin Oncol; 2023 Nov; 149(16):14549-14564. PubMed ID: 37567987 [TBL] [Abstract][Full Text] [Related]
17. Deep learning for detection of iso-dense, obscure masses in mammographically dense breasts. Rangarajan K; Aggarwal P; Gupta DK; Dhanakshirur R; Baby A; Pal C; Gupta AK; Hari S; Banerjee S; Arora C Eur Radiol; 2023 Nov; 33(11):8112-8121. PubMed ID: 37209125 [TBL] [Abstract][Full Text] [Related]
18. Deep learning performance for detection and classification of microcalcifications on mammography. Pesapane F; Trentin C; Ferrari F; Signorelli G; Tantrige P; Montesano M; Cicala C; Virgoli R; D'Acquisto S; Nicosia L; Origgi D; Cassano E Eur Radiol Exp; 2023 Nov; 7(1):69. PubMed ID: 37934382 [TBL] [Abstract][Full Text] [Related]
19. Reliable quality assurance of X-ray mammography scanner by evaluation the standard mammography phantom image using an interpretable deep learning model. Oh JH; Kim HG; Lee KM; Ryu CW Eur J Radiol; 2022 Sep; 154():110369. PubMed ID: 35691109 [TBL] [Abstract][Full Text] [Related]