BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38410395)

  • 21. Functional Disassociation Between the Protein Domains of MSMEG_4305 of
    Czubat B; Minias A; Brzostek A; Żaczek A; Struś K; Zakrzewska-Czerwińska J; Dziadek J
    Front Microbiol; 2020; 11():2008. PubMed ID: 32973726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying novel mycobacterial stress associated genes using a random mutagenesis screen in Mycobacterium smegmatis.
    Viswanathan G; Joshi SV; Sridhar A; Dutta S; Raghunand TR
    Gene; 2015 Dec; 574(1):20-7. PubMed ID: 26211627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycobacterium smegmatis does not display functional redundancy in nitrate reductase enzymes.
    Cardoso NC; Papadopoulos AO; Kana BD
    PLoS One; 2021; 16(1):e0245745. PubMed ID: 33471823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elimination of PknL and MSMEG_4242 in
    Báez-Ramírez E; Querales L; Aranaga CA; López G; Guerrero E; Kremer L; Carrère-Kremer S; Viljoen A; Daffé M; Laval F; Cole ST; Benjak A; Alzari P; André-Leroux G; Jacobs WR; Vilcheze C; Takiff HE
    Cell Surf; 2021 Dec; 7():100060. PubMed ID: 34485766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of a membrane transport system MSMEG_1381 and MSMEG_1382 confers multidrug resistance in Mycobacterium smegmatis.
    Salini S; Muralikrishnan B; Bhat SG; Ghate SD; Rao RSP; Kumar RA; Kurthkoti K
    Microb Pathog; 2023 Dec; 185():106384. PubMed ID: 37838146
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MSMEG_3955 from Mycobacterium smegmatis is a FMN bounded homotrimeric NAD(P)H:Flavin mononucleotide (FMN) oxidoreductase.
    Khosla N; Thayil SM; Kaur R; Kesavan AK
    BMC Microbiol; 2021 Nov; 21(1):319. PubMed ID: 34798816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Genes Involved in Bacteriostatic Antibiotic-Induced Persister Formation.
    Cui P; Niu H; Shi W; Zhang S; Zhang W; Zhang Y
    Front Microbiol; 2018; 9():413. PubMed ID: 29559967
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 29. Functional identification of MSMEG_6402 protein from Mycobacterium smegmatis in decaprenylphosphoryl-D-arabinose biosynthesis.
    Jiang T; Cai L; Zhao X; He L; Ma Y; Zang S; Zhang C; Li X; Xin Y
    Microb Pathog; 2014 Nov; 76():44-50. PubMed ID: 25223716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA binding and gene regulatory functions of MSMEG_2295, a repressor encoded by the
    Patra MM; Ghosh P; Sengupta S; Das Gupta SK
    Microbiology (Reading); 2021 Oct; 167(10):. PubMed ID: 34665112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of MSMEG_0412 gene drastically affects surface related properties of Mycobacterium smegmatis.
    Zanfardino A; Migliardi A; D'Alonzo D; Lombardi A; Varcamonti M; Cordone A
    BMC Microbiol; 2016 Nov; 16(1):267. PubMed ID: 27825305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nudix hydrolases with Coenzyme A (CoA) and acyl-CoA pyrophosphatase activities confer growth advantage to
    Kapoor I; Varada R; Aroli S; Varshney U
    Microbiology (Reading); 2019 Nov; 165(11):1219-1232. PubMed ID: 31526453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the Mycobacterial MSMEG-3762/63 Efflux Pump in
    De Siena B; Campolattano N; D'Abrosca G; Russo L; Cantillon D; Marasco R; Muscariello L; Waddell SJ; Sacco M
    Front Microbiol; 2020; 11():575828. PubMed ID: 33343518
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inducible knockdown of Mycobacterium smegmatis MSMEG_2975 (glyoxalase II) affected bacterial growth, antibiotic susceptibility, biofilm, and transcriptome.
    Haris M; Chen C; Wu J; Ramzan MN; Taj A; Sha S; Ullah H; Ma Y
    Arch Microbiol; 2021 Dec; 204(1):97. PubMed ID: 34964907
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of the
    Ko EM; Kim JY; Lee S; Kim S; Hwang J; Oh JI
    J Bacteriol; 2021 Nov; 203(23):e0040221. PubMed ID: 34516281
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A complex regulatory network controlling intrinsic multidrug resistance in Mycobacterium smegmatis.
    Bowman J; Ghosh P
    Mol Microbiol; 2014 Jan; 91(1):121-34. PubMed ID: 24176019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Novel Genes Involved in
    Li T; Wang J; Cao Q; Li F; Han J; Zhu B; Zhang Y; Niu H
    Front Cell Infect Microbiol; 2020; 10():581986. PubMed ID: 33117736
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Characterization of Sirtuin-like Protein in Mycobacterium smegmatis.
    Gu L; Chen Y; Wang Q; Li X; Mi K; Deng H
    J Proteome Res; 2015 Nov; 14(11):4441-9. PubMed ID: 26375486
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational Changes in a Macrolide Antibiotic Binding Protein From
    Zhang Q; Liu X; Liu H; Zhang B; Yang H; Mi K; Guddat LW; Rao Z
    Front Microbiol; 2021; 12():780954. PubMed ID: 34956144
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin.
    Yee R; Cui P; Shi W; Feng J; Zhang Y
    Antibiotics (Basel); 2015 Dec; 4(4):627-42. PubMed ID: 27025643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.