These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 38410424)

  • 1. Graph Fourier transform for spatial omics representation and analyses of complex organs.
    Chang Y; Liu J; Jiang Y; Ma A; Yeo YY; Guo Q; McNutt M; Krull J; Rodig SJ; Barouch DH; Nolan G; Xu D; Jiang S; Li Z; Liu B; Ma Q
    Res Sq; 2024 Feb; ():. PubMed ID: 38410424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Graph Feature Auto-Encoder for the prediction of unobserved node features on biological networks.
    Hasibi R; Michoel T
    BMC Bioinformatics; 2021 Oct; 22(1):525. PubMed ID: 34706640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring single-cell spatial gene expression with tissue morphology via explainable deep learning.
    Zhao Y; Alizadeh E; Liu Y; Xu M; Mahoney JM; Li S
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-domain information fusion for enhanced cell population delineation in single-cell spatial-omics data.
    Zhu B; Gao S; Chen S; Yeung J; Bai Y; Huang AY; Yeo YY; Liao G; Mao S; Jiang ZG; Rodig SJ; Shalek AK; Nolan GP; Jiang S; Ma Z
    bioRxiv; 2024 May; ():. PubMed ID: 38798592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion.
    Li Z; Song T; Yong J; Kuang R
    PLoS Comput Biol; 2021 Apr; 17(4):e1008218. PubMed ID: 33826608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on deep learning applications in highly multiplexed tissue imaging data analysis.
    Zidane M; Makky A; Bruhns M; Rochwarger A; Babaei S; Claassen M; Schürch CM
    Front Bioinform; 2023; 3():1159381. PubMed ID: 37564726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial domain detection using contrastive self-supervised learning for spatial multi-omics technologies.
    Yao J; Yu J; Caffo B; Page SC; Martinowich K; Hicks SC
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Jin K; Zhang Z; Zhang K; Viggiani F; Callahan C; Tang J; Aronow BJ; Shu J
    bioRxiv; 2023 Sep; ():. PubMed ID: 37786667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk.
    Shao X; Li C; Yang H; Lu X; Liao J; Qian J; Wang K; Cheng J; Yang P; Chen H; Xu X; Fan X
    Nat Commun; 2022 Jul; 13(1):4429. PubMed ID: 35908020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network.
    Li X; Huang W; Xu X; Zhang HY; Shi Q
    Front Genet; 2023; 14():1202409. PubMed ID: 37303949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide.
    Curry AR; Ooi L; Matosin N
    Stress; 2024 Jan; 27(1):2351394. PubMed ID: 38752853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-linked alignment tool (SLAT) for aligning heterogenous slices.
    Xia CR; Cao ZJ; Tu XM; Gao G
    Nat Commun; 2023 Nov; 14(1):7236. PubMed ID: 37945600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spage2vec: Unsupervised representation of localized spatial gene expression signatures.
    Partel G; Wählby C
    FEBS J; 2021 Mar; 288(6):1859-1870. PubMed ID: 32976679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study.
    Fatemi M; Feng E; Sharma C; Azher Z; Goel T; Ramwala O; Palisoul SM; Barney RE; Perreard L; Kolling FW; Salas LA; Christensen BC; Tsongalis GJ; Vaickus LJ; Levy JJ
    J Pathol Inform; 2023; 14():100308. PubMed ID: 37114077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncover spatially informed variations for single-cell spatial transcriptomics with STew.
    Guo N; Vargas J; Reynoso S; Fritz D; Krishna R; Wang C; Zhang F
    Bioinform Adv; 2024; 4(1):vbae064. PubMed ID: 38827413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Omics Driven Crossmodal Pretraining Applied to Graph-based Deep Learning for Cancer Pathology Analysis.
    Azher Z; Fatemi M; Lu Y; Srinivasan G; Diallo A; Christensen B; Salas L; Kolling F; Perreard L; Palisoul S; Vaickus L; Levy J
    bioRxiv; 2023 Jul; ():. PubMed ID: 37577686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MarsGT: Multi-omics analysis for rare population inference using single-cell graph transformer.
    Wang X; Duan M; Li J; Ma A; Xu D; Li Z; Liu B; Ma Q
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645917
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.