BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38410726)

  • 1. Combining machine learning and remote sensing-integrated crop modeling for rice and soybean crop simulation.
    Ko J; Shin T; Kang J; Baek J; Sang WG
    Front Plant Sci; 2024; 15():1320969. PubMed ID: 38410726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth.
    Jeong S; Ko J; Shin T; Yeom JM
    Sci Rep; 2022 May; 12(1):9030. PubMed ID: 35637314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage.
    Zou M; Liu Y; Fu M; Li C; Zhou Z; Meng H; Xing E; Ren Y
    Front Plant Sci; 2023; 14():1272049. PubMed ID: 38235191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index.
    Zhou C; Gong Y; Fang S; Yang K; Peng Y; Wu X; Zhu R
    Front Plant Sci; 2022; 13():957870. PubMed ID: 35991436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features.
    Sun X; Yang Z; Su P; Wei K; Wang Z; Yang C; Wang C; Qin M; Xiao L; Yang W; Zhang M; Song X; Feng M
    Front Plant Sci; 2023; 14():1158837. PubMed ID: 37063231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring Wheat Growth Using a Portable Three-Band Instrument for Crop Growth Monitoring and Diagnosis.
    Li H; Lin W; Pang F; Jiang X; Cao W; Zhu Y; Ni J
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32443796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages.
    Yue J; Feng H; Tian Q; Zhou C
    Plant Methods; 2020; 16():104. PubMed ID: 32765637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting rice productivity for ground data-sparse regions: A transferable framework and its application to North Korea.
    Shi Y; Li L; Wu B; Zhang Y; Wang B; Niu W; He L; Jin N; Pan S; Tian H; Yu Q
    Sci Total Environ; 2024 Jun; 946():174227. PubMed ID: 38936710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downscaling Global Gridded Crop Yield Data Products and Crop Water Productivity Mapping Using Remote Sensing Derived Variables in the South Asia.
    Mohanasundaram S; Kasiviswanathan KS; Purnanjali C; Santikayasa IP; Singh S
    Int J Plant Prod; 2023; 17(1):1-16. PubMed ID: 36405847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3.
    Gray SB; Dermody O; DeLucia EH
    J Exp Bot; 2010 Oct; 61(15):4413-22. PubMed ID: 20696654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season.
    Gong Y; Yang K; Lin Z; Fang S; Wu X; Zhu R; Peng Y
    Plant Methods; 2021 Aug; 17(1):88. PubMed ID: 34376195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms.
    Liu S; Jin X; Nie C; Wang S; Yu X; Cheng M; Shao M; Wang Z; Tuohuti N; Bai Y; Liu Y
    Plant Physiol; 2021 Nov; 187(3):1551-1576. PubMed ID: 34618054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).
    Reichenau TG; Korres W; Montzka C; Fiener P; Wilken F; Stadler A; Waldhoff G; Schneider K
    PLoS One; 2016; 11(7):e0158451. PubMed ID: 27391858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the prediction performance of leaf water content by coupling multi-source data with machine learning in rice (Oryza sativa L.).
    Zhang X; Xu H; She Y; Hu C; Zhu T; Wang L; Wu L; You C; Ke J; Zhang Q; He H
    Plant Methods; 2024 Mar; 20(1):48. PubMed ID: 38521920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models.
    Aboutalebi M; Torres-Rua AF; McKee M; Kustas WP; Nieto H; Alsina MM; White A; Prueger JH; McKee L; Alfieri J; Hipps L; Coopmans C; Dokoozlian N
    Remote Sens (Basel); 2020; 12(1):50. PubMed ID: 32355570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved gross primary production estimation in rice fields through integrated multi-scale methodologies.
    Lee B; Kwon H; Zhao P; Tenhunen J
    Plant Environ Interact; 2023 Jun; 4(3):163-174. PubMed ID: 37362422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of
    Din M; Zheng W; Rashid M; Wang S; Shi Z
    Front Plant Sci; 2017; 8():820. PubMed ID: 28588596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image.
    Duan B; Liu Y; Gong Y; Peng Y; Wu X; Zhu R; Fang S
    Plant Methods; 2019; 15():124. PubMed ID: 31695729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wheat growth monitoring and yield estimation based on remote sensing data assimilation into the SAFY crop growth model.
    Ma C; Liu M; Ding F; Li C; Cui Y; Chen W; Wang Y
    Sci Rep; 2022 Mar; 12(1):5473. PubMed ID: 35361910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.