These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38410972)
1. Origins of Selective Oxidation in Carbon-Based Nonradical Oxidation Processes toward Organic Pollutants: Quantitative Structure-Activity Relationships (QSARs). Zhang P; Sun M; Zhou C; He CS; Liu Y; Zhang H; Xiong Z; Liu W; Zhou P; Lai B Environ Sci Technol; 2024 Mar; 58(10):4781-4791. PubMed ID: 38410972 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic and Kinetic Behaviors of Persulfate-Based Electron-Transfer Regime in Carbocatalysis. Peng Y; Zhang Q; Ren W; Duan X; Ding L; Jing Y; Shao P; Xiao X; Luo X Environ Sci Technol; 2023 Nov; 57(47):19012-19022. PubMed ID: 37599507 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-activity relationships for oxidation reactions of organic chemicals in water. Canonica S; Tratnyek PG Environ Toxicol Chem; 2003 Aug; 22(8):1743-54. PubMed ID: 12924575 [TBL] [Abstract][Full Text] [Related]
4. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Lee Y; von Gunten U Water Res; 2012 Dec; 46(19):6177-95. PubMed ID: 22939392 [TBL] [Abstract][Full Text] [Related]
5. Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Ding Y; Wang X; Fu L; Peng X; Pan C; Mao Q; Wang C; Yan J Sci Total Environ; 2021 Apr; 765():142794. PubMed ID: 33129538 [TBL] [Abstract][Full Text] [Related]
6. Origins of Electron-Transfer Regime in Persulfate-Based Nonradical Oxidation Processes. Ren W; Cheng C; Shao P; Luo X; Zhang H; Wang S; Duan X Environ Sci Technol; 2022 Jan; 56(1):78-97. PubMed ID: 34932343 [TBL] [Abstract][Full Text] [Related]
7. Quantitative structure-activity relationships for the reaction kinetics of trace organic contaminants with one-electron oxidants. Liang X; Lei Y; Yang X Environ Sci Process Impacts; 2024 Jan; 26(1):192-208. PubMed ID: 38050900 [TBL] [Abstract][Full Text] [Related]
8. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. Jiang N; Xu H; Wang L; Jiang J; Zhang T Environ Sci Technol; 2020 Nov; 54(21):14057-14065. PubMed ID: 33094996 [TBL] [Abstract][Full Text] [Related]
9. Unveiling the Origins of Selective Oxidation in Single-Atom Catalysis via Co-N Yang M; Hou Z; Zhang X; Gao B; Li Y; Shang Y; Yue Q; Duan X; Xu X Environ Sci Technol; 2022 Aug; 56(16):11635-11645. PubMed ID: 35816761 [TBL] [Abstract][Full Text] [Related]
10. Experimental determination and QSAR analysis of the rate constants for SO Zhang Y; Lu K; Wang W; Guo J; Zou Y; Xu J; Li J; Pozdnyakov IP; Wu F Chemosphere; 2024 Jan; 346():140598. PubMed ID: 37926161 [TBL] [Abstract][Full Text] [Related]
11. Two new predictors combined with quantum chemical parameters for the selection of oxidants and degradation of organic contaminants: A QSAR modeling study. Cheng Z; Chen Q; Pontius FW; Gao X; Tan Y; Ma Y; Shen Z Chemosphere; 2020 Feb; 240():124928. PubMed ID: 31563101 [TBL] [Abstract][Full Text] [Related]
12. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H Su H; Yu C; Zhou Y; Gong L; Li Q; Alvarez PJJ; Long M Water Res; 2018 Sep; 140():354-363. PubMed ID: 29751317 [TBL] [Abstract][Full Text] [Related]
13. Quantitative Structure--Activity Relationship (QSAR) for the Oxidation of Trace Organic Contaminants by Sulfate Radical. Xiao R; Ye T; Wei Z; Luo S; Yang Z; Spinney R Environ Sci Technol; 2015 Nov; 49(22):13394-402. PubMed ID: 26451961 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-activity relationship for the photooxidation of aromatic micro-pollutants induced by graphene oxide in water. Wang H; Zou Y; Wang W; Zhang Y; Mailhot G; Li J; Wu F; Luo L Chemosphere; 2023 Feb; 315():137781. PubMed ID: 36623604 [TBL] [Abstract][Full Text] [Related]
15. Insight into the oxidation of phenolic pollutants by enhanced permanganate with biochar: The role of high-valent manganese intermediate species. Tian S; Liu Y; Jia L; Tian L; Qi J; Ma J; Wen G; Wang L J Hazard Mater; 2022 May; 430():128460. PubMed ID: 35180522 [TBL] [Abstract][Full Text] [Related]
16. Toward Selective Oxidation of Contaminants in Aqueous Systems. Yang Z; Qian J; Shan C; Li H; Yin Y; Pan B Environ Sci Technol; 2021 Nov; 55(21):14494-14514. PubMed ID: 34669394 [TBL] [Abstract][Full Text] [Related]
17. Peroxymonosulfate oxidation via paralleled nonradical pathways over iron and nitrogen doped porous carbons. Wang J; Zhao Y; Li C; Yu Z; Zhang Y; Li Y; Tan X; Liu S; Wang S; Duan X Sci Total Environ; 2022 Aug; 836():155670. PubMed ID: 35523353 [TBL] [Abstract][Full Text] [Related]
18. A review of quantitative structure-activity relationship methods for the prediction of atmospheric oxidation of organic chemicals. Meylan WM; Howard PH Environ Toxicol Chem; 2003 Aug; 22(8):1724-32. PubMed ID: 12924573 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-activity relationship models for predicting reaction rate constants of organic contaminants with hydrated electrons and their mechanistic pathways. Li C; Zheng S; Li T; Chen J; Zhou J; Su L; Zhang YN; Crittenden JC; Zhu S; Zhao Y Water Res; 2019 Mar; 151():468-477. PubMed ID: 30640160 [TBL] [Abstract][Full Text] [Related]
20. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Sudhakaran S; Amy GL Water Res; 2013 Mar; 47(3):1111-22. PubMed ID: 23260175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]