These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 3841098)
1. Digital synthesis of lung nodules. Sherrier RH; Johnson GA; Suddarth SA; Chiles C; Hulka C; Ravin CE Invest Radiol; 1985 Dec; 20(9):933-7. PubMed ID: 3841098 [TBL] [Abstract][Full Text] [Related]
2. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of a real-time interactive pulmonary nodule analysis system on chest digital radiographic images: a prospective study. van Beek EJ; Mullan B; Thompson B Acad Radiol; 2008 May; 15(5):571-5. PubMed ID: 18423313 [TBL] [Abstract][Full Text] [Related]
4. Validation of a Deep Learning Algorithm for the Detection of Malignant Pulmonary Nodules in Chest Radiographs. Yoo H; Kim KH; Singh R; Digumarthy SR; Kalra MK JAMA Netw Open; 2020 Sep; 3(9):e2017135. PubMed ID: 32970157 [TBL] [Abstract][Full Text] [Related]
5. Inter-observer variations of digital radiograph pulmonary nodule marking by using computer toolkit. Song W; Xu Y; Xie YM; Fan L; Qian JZ; Jin ZY Chin Med Sci J; 2007 Mar; 22(1):1-4. PubMed ID: 17441308 [TBL] [Abstract][Full Text] [Related]
6. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system. Kakeda S; Moriya J; Sato H; Aoki T; Watanabe H; Nakata H; Oda N; Katsuragawa S; Yamamoto K; Doi K AJR Am J Roentgenol; 2004 Feb; 182(2):505-10. PubMed ID: 14736690 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based automatic detection for pulmonary nodules on chest radiographs: The relationship with background lung condition, nodule characteristics, and location. Ueno M; Yoshida K; Takamatsu A; Kobayashi T; Aoki T; Gabata T Eur J Radiol; 2023 Sep; 166():111002. PubMed ID: 37499478 [TBL] [Abstract][Full Text] [Related]
8. Bone suppressed images improve radiologists' detection performance for pulmonary nodules in chest radiographs. Schalekamp S; van Ginneken B; Meiss L; Peters-Bax L; Quekel LG; Snoeren MM; Tiehuis AM; Wittenberg R; Karssemeijer N; Schaefer-Prokop CM Eur J Radiol; 2013 Dec; 82(12):2399-405. PubMed ID: 24113431 [TBL] [Abstract][Full Text] [Related]
10. Subtle lung nodules: influence of local anatomic variations on detection. Samei E; Flynn MJ; Peterson E; Eyler WR Radiology; 2003 Jul; 228(1):76-84. PubMed ID: 12750455 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy. Hirose T; Nitta N; Shiraishi J; Nagatani Y; Takahashi M; Murata K Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867 [TBL] [Abstract][Full Text] [Related]
12. Gray-scale inversion radiographic display for the detection of pulmonary nodules on chest radiographs. Lungren MP; Samei E; Barnhart H; McAdams HP; Leder RA; Christensen JD; Wylie JD; Tan JW; Li X; Hurwitz LM Clin Imaging; 2012; 36(5):515-21. PubMed ID: 22920355 [TBL] [Abstract][Full Text] [Related]
13. Assessing the use of digital radiography and a real-time interactive pulmonary nodule analysis system for large population lung cancer screening. Xu Y; Ma D; He W Eur J Radiol; 2012 Apr; 81(4):e451-6. PubMed ID: 21621935 [TBL] [Abstract][Full Text] [Related]
15. Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system. Jacobs C; van Rikxoort EM; Scholten ET; de Jong PA; Prokop M; Schaefer-Prokop C; van Ginneken B Invest Radiol; 2015 Mar; 50(3):168-73. PubMed ID: 25478740 [TBL] [Abstract][Full Text] [Related]
16. Differentiation of benign from malignant pulmonary nodules with digitized chest radiographs. Sherrier RH; Chiles C; Johnson GA; Ravin CE Radiology; 1987 Mar; 162(3):645-9. PubMed ID: 3809476 [TBL] [Abstract][Full Text] [Related]
17. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. Shiraishi J; Katsuragawa S; Ikezoe J; Matsumoto T; Kobayashi T; Komatsu K; Matsui M; Fujita H; Kodera Y; Doi K AJR Am J Roentgenol; 2000 Jan; 174(1):71-4. PubMed ID: 10628457 [TBL] [Abstract][Full Text] [Related]
18. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Nam JG; Park S; Hwang EJ; Lee JH; Jin KN; Lim KY; Vu TH; Sohn JH; Hwang S; Goo JM; Park CM Radiology; 2019 Jan; 290(1):218-228. PubMed ID: 30251934 [TBL] [Abstract][Full Text] [Related]
19. [Comparison of digital radiography and conventional X-ray in the diagnosis of solitary pulmonary nodule with receiver operating characteristic analysis]. Duan G; Chen WG; Wang JY; Huang XH; Wang Y; Lu W Di Yi Jun Yi Da Xue Xue Bao; 2003 Jun; 23(6):621-3. PubMed ID: 12810395 [TBL] [Abstract][Full Text] [Related]
20. Computer-simulated lung nodules in digital chest radiographs for detection studies. Yocky DA; Seeley GW; Ovitt TW; Roehrig H; Dallas WJ Invest Radiol; 1990 Aug; 25(8):902-7. PubMed ID: 2394573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]