These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38411102)

  • 1. Liquid-Liquid Crossover in Water Model: Local Structure vs Kinetics of Hydrogen Bonds.
    Mokshin AV; Vlasov RV
    J Phys Chem B; 2024 Mar; 128(10):2337-2346. PubMed ID: 38411102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water.
    Lupi L; Vázquez Ramírez B; Gallo P
    J Chem Phys; 2021 Aug; 155(5):054502. PubMed ID: 34364341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic bond fluctuations and crossover to potential-energy-landscape-influenced regime in supercooled liquid.
    Levashov VA; Egami T; Aga RS; Morris JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041202. PubMed ID: 18999407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Bonding and Related Properties in Liquid Water: A Car-Parrinello Molecular Dynamics Simulation Study.
    Guardia E; Skarmoutsos I; Masia M
    J Phys Chem B; 2015 Jul; 119(29):8926-38. PubMed ID: 25313871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.
    Bauer BA; Patel S
    J Chem Phys; 2009 Aug; 131(8):084709. PubMed ID: 19725623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinguishing Weak and Strong Hydrogen Bonds in Liquid Water-A Potential of Mean Force-Based Approach.
    Muthachikavil AV; Peng B; Kontogeorgis GM; Liang X
    J Phys Chem B; 2021 Jul; 125(26):7187-7198. PubMed ID: 34184538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of structural and dynamical properties of formamide-water mixtures.
    Elola MD; Ladanyi BM
    J Chem Phys; 2006 Nov; 125(18):184506. PubMed ID: 17115764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water: two liquids divided by a common hydrogen bond.
    Soper AK
    J Phys Chem B; 2011 Dec; 115(48):14014-22. PubMed ID: 21612286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic anomalies in a lattice model of water.
    Pretti M; Buzano C
    J Chem Phys; 2004 Dec; 121(23):11856-66. PubMed ID: 15634147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions.
    Biddle JW; Singh RS; Sparano EM; Ricci F; González MA; Valeriani C; Abascal JL; Debenedetti PG; Anisimov MA; Caupin F
    J Chem Phys; 2017 Jan; 146(3):034502. PubMed ID: 28109212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water.
    Poole PH; Becker SR; Sciortino F; Starr FW
    J Phys Chem B; 2011 Dec; 115(48):14176-83. PubMed ID: 21866981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manifestations of the structural origin of supercooled water's anomalies in the heterogeneous relaxation on the potential energy landscape.
    Mondal A; Ramesh G; Singh RS
    J Chem Phys; 2022 Nov; 157(18):184503. PubMed ID: 36379783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-energy landscape and spinodals for the liquid-liquid transition of the TIP4P/2005 and TIP4P/Ice models of water.
    Sciortino F; Gartner TE; Debenedetti PG
    J Chem Phys; 2024 Mar; 160(10):. PubMed ID: 38456528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercooled water in two dimensions: Structure and thermodynamics of the Mercedes-Benz model.
    Škvára J; Nezbeda I; Urbic T
    J Mol Liq; 2023 Sep; 386():. PubMed ID: 37435361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Second inflection point of supercooled water surface tension induced by hydrogen bonds: A molecular-dynamics study.
    Hrahsheh F; Jum'h I; Wilemski G
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38506292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations between thermodynamics, structures, and dynamics for modified water models in their supercooled regimes.
    Horstmann R; Vogel M
    J Chem Phys; 2021 Feb; 154(5):054502. PubMed ID: 33557532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model.
    Gartner TE; Hunter KM; Lambros E; Caruso A; Riera M; Medders GR; Panagiotopoulos AZ; Debenedetti PG; Paesani F
    J Phys Chem Lett; 2022 Apr; 13(16):3652-3658. PubMed ID: 35436129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes.
    De Marzio M; Camisasca G; Rovere M; Gallo P
    J Chem Phys; 2017 Feb; 146(8):084502. PubMed ID: 28249440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analysis of fluctuations in supercooled TIP4P/2005 water.
    Overduin SD; Patey GN
    J Chem Phys; 2013 May; 138(18):184502. PubMed ID: 23676051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in the theoretical, simulational, and experimental studies of the role of water hydrogen bonding in hydrophobic phenomena.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2016 Sep; 235():23-45. PubMed ID: 27312562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.