These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38411198)

  • 1. Beam induced heating in electron microscopy modeled with machine learning interatomic potentials.
    Nuñez Valencia C; Lomholdt WB; Leth Larsen MH; Hansen TW; Schiøtz J
    Nanoscale; 2024 Mar; 16(11):5750-5759. PubMed ID: 38411198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron beam broadening in electron-transparent samples at low electron energies.
    Hugenschmidt M; Müller E; Gerthsen D
    J Microsc; 2019 Jun; 274(3):150-157. PubMed ID: 31001840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting accurate ab initio DNA electron densities with equivariant neural networks.
    Lee AJ; Rackers JA; Bricker WP
    Biophys J; 2022 Oct; 121(20):3883-3895. PubMed ID: 36057785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of molecular dynamics potentials used to account for thermal diffuse scattering in multislice simulations.
    Chen X; Kim DS; LeBeau JM
    Ultramicroscopy; 2023 Feb; 244():113644. PubMed ID: 36410085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of optoelectronic properties of Cu
    Selvaratnam B; Koodali RT; Miró P
    Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Energy Electron Inelastic Mean Free Path of Graphene Measured by a Time-of-Flight Spectrometer.
    Konvalina I; Daniel B; Zouhar M; Paták A; Müllerová I; Frank L; Piňos J; Průcha L; Radlička T; Werner WSM; Mikmeková EM
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teaching a neural network to attach and detach electrons from molecules.
    Zubatyuk R; Smith JS; Nebgen BT; Tretiak S; Isayev O
    Nat Commun; 2021 Aug; 12(1):4870. PubMed ID: 34381051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Models Capture Plasmon Dynamics in Ag Nanoparticles.
    Habib A; Lubbers N; Tretiak S; Nebgen B
    J Phys Chem A; 2023 May; 127(17):3768-3778. PubMed ID: 37078657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Footprints of atomic-scale features in plasmonic nanoparticles as revealed by electron energy loss spectroscopy.
    Urbieta M; Barbry M; Koval P; Rivacoba A; Sánchez-Portal D; Aizpurua J; Zabala N
    Phys Chem Chem Phys; 2024 May; 26(20):14991-15004. PubMed ID: 38741574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition1x - a dataset for building generalizable reactive machine learning potentials.
    Schreiner M; Bhowmik A; Vegge T; Busk J; Winther O
    Sci Data; 2022 Dec; 9(1):779. PubMed ID: 36566281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning-Aided Design of Gold Core-Shell Nanocatalysts toward Enhanced and Selective Photooxygenation.
    Tamtaji M; Guo X; Tyagi A; Galligan PR; Liu Z; Roxas A; Liu H; Cai Y; Wong H; Zeng L; Xie J; Du Y; Hu Z; Lu D; Goddard WA; Zhu Y; Luo Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46471-46480. PubMed ID: 36197146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal properties of single-layer MoS
    Marmolejo-Tejada JM; Mosquera MA
    Chem Commun (Camb); 2022 Jun; 58(49):6902-6905. PubMed ID: 35639424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.