These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38411233)

  • 1. Hydrogen bonding in glassy trehalose-water system: Insights from density functional theory and molecular dynamics simulations.
    Kocherbitov V; Music D; Veryazov V
    J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38411233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.
    Weng L; Elliott GD
    Phys Chem Chem Phys; 2014 Jun; 16(23):11555-65. PubMed ID: 24803351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration enthalpies of amorphous sucrose, trehalose and maltodextrins and their relationship with heat capacities.
    Bogdanova E; Millqvist Fureby A; Kocherbitov V
    Phys Chem Chem Phys; 2021 Jul; 23(26):14433-14448. PubMed ID: 34180926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.
    Lerbret A; Affouard F
    J Phys Chem B; 2017 Oct; 121(40):9437-9451. PubMed ID: 28920435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glassy crystalline state and water sorption of alkyl maltosides.
    Kocherbitov V; Söderman O
    Langmuir; 2004 Apr; 20(8):3056-61. PubMed ID: 15875829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of Aqueous Trehalose Mixtures: Glass Transition and Hydrogen Bonding.
    Olgenblum GI; Sapir L; Harries D
    J Chem Theory Comput; 2020 Feb; 16(2):1249-1262. PubMed ID: 31917927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waterlike glass polyamorphism in a monoatomic isotropic Jagla model.
    Xu L; Giovambattista N; Buldyrev SV; Debenedetti PG; Stanley HE
    J Chem Phys; 2011 Feb; 134(6):064507. PubMed ID: 21322705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial suppression of protein dynamics in a binary glycerol-trehalose glass.
    Curtis JE; Dirama TE; Carri GA; Tobias DJ
    J Phys Chem B; 2006 Nov; 110(46):22953-6. PubMed ID: 17107124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.
    Giovambattista N; Stanley HE; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031510. PubMed ID: 16241447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces.
    Emel'yanenko VN; Stange P; Feder-Kubis J; Verevkin SP; Ludwig R
    Phys Chem Chem Phys; 2020 Mar; 22(9):4896-4904. PubMed ID: 31930249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently linked hydrogen bond donors: The other side of molecular frustration in deep eutectic solvents.
    Recker EA; Hardy D; Anderson GI; Mirjafari A; Wagle DV
    J Chem Phys; 2021 Aug; 155(8):084502. PubMed ID: 34470341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass transition temperature of glucose, sucrose, and trehalose: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Bonnet PA; Jones W; Motherwell WD; Zifferer G
    J Phys Chem B; 2006 Oct; 110(39):19678-84. PubMed ID: 17004837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of aging on the physical properties of amorphous trehalose.
    Surana R; Pyne A; Suryanarayanan R
    Pharm Res; 2004 May; 21(5):867-74. PubMed ID: 15180347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical characterization of 6-O-acyl trehalose fatty acid monoesters in desiccated system.
    Ogawa S; Honda K; Tsubomura T; Totani K; Takahashi I; Hara S
    Chem Phys Lipids; 2018 Nov; 216():80-90. PubMed ID: 30273546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How strongly does trehalose interact with lysozyme in the solid state? Insights from molecular dynamics simulation and inelastic neutron scattering.
    Lerbret A; Affouard F; Hédoux A; Krenzlin S; Siepmann J; Bellissent-Funel MC; Descamps M
    J Phys Chem B; 2012 Sep; 116(36):11103-16. PubMed ID: 22894179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of global and local mobility in amorphous sucrose and trehalose as determined by differential scanning calorimetry.
    Dranca I; Bhattacharya S; Vyazovkin S; Suryanarayanan R
    Pharm Res; 2009 May; 26(5):1064-72. PubMed ID: 19130185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctly Different Glass Transition Behaviors of Trehalose Mixed with Na2HPO 4 or NaH 2PO 4: Evidence for its Molecular Origin.
    Weng L; Elliott GD
    Pharm Res; 2015 Jul; 32(7):2217-28. PubMed ID: 25537342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.