These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3841184)

  • 21. Preparation of two-dimensional crystals of complex I and image analysis.
    Boekema EJ; Van Heel MG; Van Bruggen EF
    Methods Enzymol; 1986; 126():344-53. PubMed ID: 3152412
    [No Abstract]   [Full Text] [Related]  

  • 22. 1.59 A structure of trypsin at 120 K: comparison of low temperature and room temperature structures.
    Earnest T; Fauman E; Craik CS; Stroud R
    Proteins; 1991; 10(3):171-87. PubMed ID: 1881877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast crystallography and time-resolved structures.
    Hajdu J
    Annu Rev Biophys Biomol Struct; 1993; 22():467-98. PubMed ID: 8347998
    [No Abstract]   [Full Text] [Related]  

  • 24. NMR structure determination in solution: a critique and comparison with X-ray crystallography.
    Wagner G; Hyberts SG; Havel TF
    Annu Rev Biophys Biomol Struct; 1992; 21():167-98. PubMed ID: 1525468
    [No Abstract]   [Full Text] [Related]  

  • 25. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures.
    Prestrelski SJ; Byler DM; Liebman MN
    Biochemistry; 1991 Jan; 30(1):133-43. PubMed ID: 1988014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein.
    Flaherty KM; DeLuca-Flaherty C; McKay DB
    Nature; 1990 Aug; 346(6285):623-8. PubMed ID: 2143562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High resolution x-ray structure of yeast hexokinase, an allosteric protein exhibiting a non-symmetric arrangement of subunits.
    Steitz TA; Fletterick RJ; Anderson WF; Anderson CM
    J Mol Biol; 1976 Jun; 104(1):197-22. PubMed ID: 785010
    [No Abstract]   [Full Text] [Related]  

  • 28. Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes.
    Janin J; Chothia C
    J Mol Biol; 1976 Jan; 100(2):197-211. PubMed ID: 943547
    [No Abstract]   [Full Text] [Related]  

  • 29. A model for the association of bovine pancreatic trypsin inhibitor with chymotrypsin and trypsin.
    Blow DM; Wright CS; Kukla D; Rühlmann A; Steigemann W; Huber R
    J Mol Biol; 1972 Aug; 69(1):137-44. PubMed ID: 4672197
    [No Abstract]   [Full Text] [Related]  

  • 30. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin.
    Bode W; Chen Z; Bartels K; Kutzbach C; Schmidt-Kastner G; Bartunik H
    J Mol Biol; 1983 Feb; 164(2):237-82. PubMed ID: 6551452
    [No Abstract]   [Full Text] [Related]  

  • 31. Determination of water structure around biomolecules using X-ray and neutron diffraction methods.
    Savage H; Wlodawer A
    Methods Enzymol; 1986; 127():162-83. PubMed ID: 3736419
    [No Abstract]   [Full Text] [Related]  

  • 32. The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Angstrom and at 2-7 Angstron resolution.
    Stroud RM; Kay LM; Dickerson RE
    J Mol Biol; 1974 Feb; 83(2):185-208. PubMed ID: 4821870
    [No Abstract]   [Full Text] [Related]  

  • 33. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex.
    Chen Z; Bode W
    J Mol Biol; 1983 Feb; 164(2):283-311. PubMed ID: 6188842
    [No Abstract]   [Full Text] [Related]  

  • 34. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region.
    Rühlmann A; Kukla D; Schwager P; Bartels K; Huber R
    J Mol Biol; 1973 Jul; 77(3):417-36. PubMed ID: 4737866
    [No Abstract]   [Full Text] [Related]  

  • 35. Early days of protein crystallography.
    Perutz M
    Methods Enzymol; 1985; 114():3-18. PubMed ID: 4079771
    [No Abstract]   [Full Text] [Related]  

  • 36. Automated peak fitting procedure for processing data from an area detector and its application to the neutron structure of trypsin.
    Kossiakoff AA; Spencer SA
    Methods Enzymol; 1985; 114():530-51. PubMed ID: 4079778
    [No Abstract]   [Full Text] [Related]  

  • 37. Structure and specific binding of trypsin: comparison of inhibited derivatives and a model for substrate binding.
    Krieger M; Kay LM; Stroud RM
    J Mol Biol; 1974 Feb; 83(2):209-30. PubMed ID: 4821871
    [No Abstract]   [Full Text] [Related]  

  • 38. Dynamics of folded proteins.
    McCammon JA; Gelin BR; Karplus M
    Nature; 1977 Jun; 267(5612):585-90. PubMed ID: 301613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Maps of preferential conformation of dipeptides in the structural regions of globular proteins].
    Barkovskiĭ EV; Kirilenko DV
    Biofizika; 1985; 30(5):786-90. PubMed ID: 4052479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Describing patterns of protein tertiary structure.
    Richardson JS
    Methods Enzymol; 1985; 115():341-58. PubMed ID: 4079792
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.