These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38412129)

  • 1. Real-time imaging of standing-wave patterns in microresonators.
    Yan H; Ghosh A; Pal A; Zhang H; Bi T; Ghalanos G; Zhang S; Hill L; Zhang Y; Zhuang Y; Xavier J; Del'Haye P
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2313981121. PubMed ID: 38412129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microresonators in CMOS compatible substrate.
    Yegnanarayanan S; Soltani M; Li Q; Hosseini ES; Eftekhar AA; Adibi A
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1508-24. PubMed ID: 20355540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perpendicular coupler for standing wave excitation and wavelength selection in high-Q silicon microresonators.
    Wan S; Shu FJ; Niu R; Guo GC; Zou CL; Dong CH
    Opt Express; 2020 May; 28(11):15835-15843. PubMed ID: 32549419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent suppression of backscattering in optical microresonators.
    Svela AØ; Silver JM; Del Bino L; Zhang S; Woodley MTM; Vanner MR; Del'Haye P
    Light Sci Appl; 2020 Dec; 9(1):204. PubMed ID: 33353941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mid-infrared frequency combs and staggered spectral patterns in χ
    Amiune N; Fan Z; Pankratov VV; Puzyrev DN; Skryabin DV; Zawilski KT; Schunemann PG; Breunig I
    Opt Express; 2023 Jan; 31(2):907-915. PubMed ID: 36785139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mid-infrared ultra-broadband optical Kerr frequency comb based on a CdTe ring microresonator: a theoretical investigation.
    Lu S; Liu X; Shi Y; Yang H; Long Z; Li Y; Wu H; Liang H
    Opt Express; 2022 Sep; 30(19):33969-33979. PubMed ID: 36242420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microresonator array for high-resolution spectroscopy.
    Schweiger G; Nett R; Weigel T
    Opt Lett; 2007 Sep; 32(18):2644-6. PubMed ID: 17873921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion Efficiency in Kerr-Microresonator Optical Parametric Oscillators: From Three Modes to Many Modes.
    Stone JR; Moille G; Lu X; Srinivasan K
    Phys Rev Appl; 2022 Feb; 17(2):. PubMed ID: 36591596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Photon-Plasmon Coupling and Ultrafast Control of Nanoantennas on a Silicon Photonic Chip.
    Chen B; Bruck R; Traviss D; Khokhar AZ; Reynolds S; Thomson DJ; Mashanovich GZ; Reed GT; Muskens OL
    Nano Lett; 2018 Jan; 18(1):610-617. PubMed ID: 29272140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable metasurfaces for visible and SWIR applications.
    Lee CW; Choi HJ; Jeong H
    Nano Converg; 2020 Jan; 7(1):3. PubMed ID: 31956942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly-twisted states of light from a high quality factor photonic crystal ring.
    Lu X; Wang M; Zhou F; Heuck M; Zhu W; Aksyuk VA; Englund DR; Srinivasan K
    Nat Commun; 2023 Feb; 14(1):1119. PubMed ID: 36849526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kerr-Nonlinearity-Induced Mode-Splitting in Optical Microresonators.
    Ghalanos GN; Silver JM; Del Bino L; Moroney N; Zhang S; Woodley MTM; Svela AØ; Del'Haye P
    Phys Rev Lett; 2020 Jun; 124(22):223901. PubMed ID: 32567919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical fiber microcoil resonators.
    Sumetsky M
    Opt Express; 2004 May; 12(10):2303-16. PubMed ID: 19475067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Four-port SNAP microresonator device.
    Crespo-Ballesteros M; Yang Y; Toropov N; Sumetsky M
    Opt Lett; 2019 Jul; 44(14):3498-3501. PubMed ID: 31305557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-mode soliton linear-wave scattering in a Kerr microresonator.
    Xu Y; Liu S; Qureshi P; Erkintalo M; Coen S; Ma H; Murdoch SG
    Opt Lett; 2022 Dec; 47(23):6301-6304. PubMed ID: 37219232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral extension and synchronization of microcombs in a single microresonator.
    Zhang S; Silver JM; Bi T; Del'Haye P
    Nat Commun; 2020 Dec; 11(1):6384. PubMed ID: 33318482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Third-harmonic-assisted four-wave mixing in a chip-based microresonator frequency comb generation.
    Zhang H; Wu Y; Yang H; Ju Z; Kang Z; He J; Pan S
    Opt Express; 2022 Oct; 30(21):37379-37393. PubMed ID: 36258327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time observation of the thermo-optical and heat dissipation processes in microsphere resonators.
    Zhou H; Xiao B; Yang N; Yuan S; Zhu S; Duan Y; Shi L; Zhang C; Zhang X
    Opt Express; 2021 Jan; 29(2):2402-2410. PubMed ID: 33726436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system.
    Jiang S; Guo C; Fu H; Che K; Xu H; Cai Z
    Opt Express; 2020 Dec; 28(25):38304-38316. PubMed ID: 33379645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-wave laser operation of a dipole antenna terahertz microresonator.
    Masini L; Pitanti A; Baldacci L; Vitiello MS; Degl'Innocenti R; Beere HE; Ritchie DA; Tredicucci A
    Light Sci Appl; 2017 Oct; 6(10):e17054. PubMed ID: 30167200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.