These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38412372)

  • 1. Let Us Put More Energy Into Measuring Energy Expenditure: The Next Phase of Indirect Calorimetry.
    Albert BD
    Pediatr Crit Care Med; 2023 Oct; 24(10):880-882. PubMed ID: 38412372
    [No Abstract]   [Full Text] [Related]  

  • 2. A balance sheet of the estimation of energy intake and energy expenditure as measured by indirect calorimetry, using the Kofranyi-Michaelis calorimeter.
    PASSMORE R; THOMSON JG; WARNOCK GM; DIXON CM; KITCHIN AH; SMITH G; VAUGHAN MC; WATT JA
    Br J Nutr; 1952; 6(3):253-64. PubMed ID: 12978212
    [No Abstract]   [Full Text] [Related]  

  • 3. Indirect calorimetry: methodology, instruments and clinical application.
    da Rocha EE; Alves VG; da Fonseca RB
    Curr Opin Clin Nutr Metab Care; 2006 May; 9(3):247-56. PubMed ID: 16607124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the energy expenditure of Belgian nursing home residents using indirect calorimetry.
    Buckinx F; Paquot N; Fadeur M; Bacus L; Reginster JY; Allepaerts S; Petermans J; Biquet S; Bruyère O
    Nutrition; 2019 Jan; 57():12-16. PubMed ID: 30099232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of doubly labeled water, intake-balance, and direct- and indirect-calorimetry methods for measuring energy expenditure in adult men.
    Seale JL; Rumpler WV; Conway JM; Miles CW
    Am J Clin Nutr; 1990 Jul; 52(1):66-71. PubMed ID: 2193502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry: A Systematic Literature Review.
    Tatucu-Babet OA; Ridley EJ; Tierney AC
    JPEN J Parenter Enteral Nutr; 2016 Feb; 40(2):212-25. PubMed ID: 25605706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect calorimetry: a practical guide for clinicians.
    Haugen HA; Chan LN; Li F
    Nutr Clin Pract; 2007 Aug; 22(4):377-88. PubMed ID: 17644692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New generation indirect calorimeters for measuring energy expenditure in the critically ill: a rampant or reticent revolution?
    De Waele E; Honore PM; Spapen HD
    Crit Care; 2016 Jun; 20(1):138. PubMed ID: 27262591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Although None of the Resting Energy Expenditure Calculated From Predictive Equations Had Very Good Agreements, the Swinamer Equation Could Be Used to Predict Resting Energy Expenditure When Indirect Calorimetry Is Not Available: We Are Not Sure!
    Honore PM; Redant S; Kaefer K; Barreto Gutierrez L; Kugener L; Attou R; Gallerani A; De Bels D
    Crit Care Med; 2021 Aug; 49(8):e803-e804. PubMed ID: 34261936
    [No Abstract]   [Full Text] [Related]  

  • 10. Indirect calorimetry and nutritional problems in clinical practice.
    Battezzati A; Viganò R
    Acta Diabetol; 2001; 38(1):1-5. PubMed ID: 11487171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect calorimetry measurements in the ventilated critically ill patient: facts and controversies--the heat is on.
    Lev S; Cohen J; Singer P
    Crit Care Clin; 2010 Oct; 26(4):e1-9. PubMed ID: 20970041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Single-Center Prospective Observational Study Comparing Resting Energy Expenditure in Different Phases of Critical Illness: Indirect Calorimetry Versus Predictive Equations.
    Tah PC; Lee ZY; Poh BK; Abdul Majid H; Hakumat-Rai VR; Mat Nor MB; Kee CC; Kamarul Zaman M; Hasan MS
    Crit Care Med; 2020 May; 48(5):e380-e390. PubMed ID: 32168031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of metabolism in critically ill patients by indirect calorimetry].
    Inaba H; Hirasawa H; Sato J; Watanabe S; Kitsukawa Y
    Nihon Geka Gakkai Zasshi; 1986 Oct; 87(10):1265-74. PubMed ID: 3099162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy requirements and the use of predictive equations versus indirect calorimetry in critically ill patients.
    Wichansawakun S; Meddings L; Alberda C; Robbins S; Gramlich L
    Appl Physiol Nutr Metab; 2015 Feb; 40(2):207-10. PubMed ID: 25610953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovations in energy expenditure assessment.
    Achamrah N; Oshima T; Genton L
    Curr Opin Clin Nutr Metab Care; 2018 Sep; 21(5):321-328. PubMed ID: 29912811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogenesis of obesity and diabetes mellitus: insights provided by indirect calorimetry in humans.
    Perseghin G
    Acta Diabetol; 2001; 38(1):7-21. PubMed ID: 11487178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy expenditure and fuel selection in biological systems: the theory and practice of calculations based on indirect calorimetry and tracer methods.
    Elia M; Livesey G
    World Rev Nutr Diet; 1992; 70():68-131. PubMed ID: 1292242
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of whole-body energy expenditure.
    Garby L
    Int J Obes Relat Metab Disord; 1993 Dec; 17 Suppl 3():S7-9; discussion S22. PubMed ID: 8124406
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.