These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38412551)

  • 1. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis.
    Yang JL; Wang HJ; Qi X; Zheng QN; Tian JH; Zhang H; Li JF
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12149-12160. PubMed ID: 38412551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Boosting by Surface-Plasmon-Driven Hot Electrons on Antenna-Reactor Schottky Nanodiodes.
    Kang M; Jeon B; Park JY
    Nano Lett; 2023 Jun; 23(11):5116-5122. PubMed ID: 37265068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing Plasmon-Induced Hot Carriers at the Interfaces With Ferroelectrics.
    Kumar V; O'Donnell SC; Sang DL; Maggard PA; Wang G
    Front Chem; 2019; 7():299. PubMed ID: 31139615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner.
    Bai H; Lam SH; Yang J; Cheng X; Li S; Jiang R; Shao L; Wang J
    Adv Mater; 2022 Jan; 34(2):e2104226. PubMed ID: 34655458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of Different Charge-Transfer Mechanisms in the Hot-Carrier Dynamics of Hybrid Plasmonic Nanomaterials.
    Zhang J; Guan M; Lischner J; Meng S; Prezhdo OV
    Nano Lett; 2019 May; 19(5):3187-3193. PubMed ID: 30995064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions.
    Sistani M; Bartmann MG; Güsken NA; Oulton RF; Keshmiri H; Luong MA; Momtaz ZS; Den Hertog MI; Lugstein A
    ACS Photonics; 2020 Jul; 7(7):1642-1648. PubMed ID: 32685608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular-level Manipulation of Interface Charge Transfer on Plasmonic Metal/MOF Heterostructures.
    Wang S; Tang D; Zhang Y; Zhao J
    Chemphyschem; 2023 Jan; 24(1):e202200565. PubMed ID: 36124812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Plasmonic Hot Spots in Au-Based Nanostructures for Sensing and Photocatalysis.
    Wy Y; Jung H; Hong JW; Han SW
    Acc Chem Res; 2022 Mar; 55(6):831-843. PubMed ID: 35213153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon polariton-induced hot carrier generation for photocatalysis.
    Ahn W; Ratchford DC; Pehrsson PE; Simpkins BS
    Nanoscale; 2017 Mar; 9(9):3010-3022. PubMed ID: 28182184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective Charge Carrier Utilization in Photocatalytic Conversions.
    Zhang P; Wang T; Chang X; Gong J
    Acc Chem Res; 2016 May; 49(5):911-21. PubMed ID: 27075166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Schottky-barrier-free plasmonic photocatalysts.
    An K; Hu J; Wang J
    Phys Chem Chem Phys; 2023 Jul; 25(29):19358-19370. PubMed ID: 37439122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.