BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38412912)

  • 1. Production of activated carbon from agave residues and its synergistic application in a hybrid adsorption-AOPs system for effective removal of sulfamethazine from aqueous solutions.
    Serna-Carrizales JC; Zárate Guzmán AI; Forgionny A; Acelas N; Pérez S; Muñoz-Saldaña J; Ocampo-Perez R
    Environ Res; 2024 Jun; 250():118559. PubMed ID: 38412912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron doped fibrous-structured silica nanospheres as efficient catalyst for catalytic ozonation of sulfamethazine.
    Bai Z; Wang J; Yang Q
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):10090-10101. PubMed ID: 29383642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of sulfamethazine in water by sulfite activated with zero-valent Fe-Cu bimetallic nanoparticles.
    Dong Q; Dong H; Li Y; Xiao J; Xiang S; Hou X; Chu D
    J Hazard Mater; 2022 Jun; 431():128601. PubMed ID: 35255337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped flower-like porous carbon nanostructures for fast removal of sulfamethazine from water.
    Xu G; Zhang B; Wang X; Li N; Liu L; Lin JM; Zhao RS
    Environ Pollut; 2019 Dec; 255(Pt 2):113229. PubMed ID: 31557559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe
    Su H; Dou X; Xu D; Feng L; Liu Y; Du Z; Zhang L
    Chemosphere; 2022 Apr; 293():133665. PubMed ID: 35051510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism.
    Huang D; Wang X; Zhang C; Zeng G; Peng Z; Zhou J; Cheng M; Wang R; Hu Z; Qin X
    Chemosphere; 2017 Nov; 186():414-421. PubMed ID: 28802133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive removal and photocatalytic decomposition of sulfamethazine in secondary effluent using TiO2-zeolite composites.
    Ito M; Fukahori S; Fujiwara T
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):834-42. PubMed ID: 23636590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of bimetallic Ag/Fe immobilized on modified biochar for removal of carbon tetrachloride.
    Wu H; Feng Q
    J Environ Sci (China); 2017 Apr; 54():346-357. PubMed ID: 28391946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs.
    Yang Q; Chen D; Chu L; Wang J
    J Hazard Mater; 2020 May; 389():122148. PubMed ID: 32004844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of the Electro/Fe
    Ledjeri A; Yahiaoui I; Kadji H; Aissani-Benissad F; Amrane A; Fourcade F
    Environ Toxicol Pharmacol; 2017 Jul; 53():34-39. PubMed ID: 28501782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ce-Fe-reduced graphene oxide nanocomposite as an efficient catalyst for sulfamethazine degradation in aqueous solution.
    Wan Z; Wang J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18542-51. PubMed ID: 27294699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue.
    Almazán-Sánchez PT; Solache-Ríos MJ; Linares-Hernández I; Martínez-Miranda V
    Environ Technol; 2016; 37(14):1843-56. PubMed ID: 26878687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of sulphamethazine by means of an improved photo-Fenton process involving a hydrogen peroxide systematic dosage.
    Yamal-Turbay E; González LP; Graells M; Pérez-Moya M
    Environ Technol; 2014 Aug; 35(13-16):1695-701. PubMed ID: 24956760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential of Fe(III)-EGTA and Fe(III)-DTPA as the catalysts to enhance UV/persulfate in the degradation of aqueous sulfamethazine.
    Ng KA; Low KH; Tay KS
    Water Environ Res; 2023 Apr; 95(4):e10862. PubMed ID: 37032435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process.
    Wan Z; Hu J; Wang J
    J Environ Manage; 2016 Nov; 182():284-291. PubMed ID: 27494604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of bisphenol A by Fe-impregnated activated carbons.
    Arampatzidou A; Voutsa D; Deliyanni E
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25869-25879. PubMed ID: 29959743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine.
    Tang J; Wang J
    Environ Sci Technol; 2018 May; 52(9):5367-5377. PubMed ID: 29617120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of iron-loaded granular activated carbon used as heterogeneous fenton catalyst for degradation of tetracycline.
    He Z; Xu X; Wang B; Lu Z; Shi D; Wu W
    J Environ Manage; 2022 Nov; 322():116077. PubMed ID: 36055098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption removal and photocatalytic degradation of azithromycin from aqueous solution using PAC/Fe/Ag/Zn nanocomposite.
    Mehrdoost A; Yengejeh RJ; Mohammadi MK; Haghighatzadeh A; Babaei AA
    Environ Sci Pollut Res Int; 2022 May; 29(22):33514-33527. PubMed ID: 35029828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.