These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 38413010)

  • 1. When Data Are Lacking: Physics-Based Inverse Design of Biopolymers Interacting with Complex, Fluid Phases.
    Methorst J; van Hilten N; Hoti A; Stroh KS; Risselada HJ
    J Chem Theory Comput; 2024 Mar; 20(5):1763-1776. PubMed ID: 38413010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-based generative model of curvature sensing peptides; distinguishing sensors from binders.
    van Hilten N; Methorst J; Verwei N; Risselada HJ
    Sci Adv; 2023 Mar; 9(11):eade8839. PubMed ID: 36930719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Quantification of Lipid Packing Defect Sensing by Amphipathic Peptides: Comparing Martini 2 and 3 with CHARMM36.
    van Hilten N; Stroh KS; Risselada HJ
    J Chem Theory Comput; 2022 Jul; 18(7):4503-4514. PubMed ID: 35709386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating Coarse-Grained MARTINI Force-Fields for Capturing the Ripple Phase of Lipid Membranes.
    Sharma P; Desikan R; Ayappa KG
    J Phys Chem B; 2021 Jun; 125(24):6587-6599. PubMed ID: 34081861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics.
    Jewett AI; Stelter D; Lambert J; Saladi SM; Roscioni OM; Ricci M; Autin L; Maritan M; Bashusqeh SM; Keyes T; Dame RT; Shea JE; Jensen GJ; Goodsell DS
    J Mol Biol; 2021 May; 433(11):166841. PubMed ID: 33539886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamic Simulations for Biopolymers with Biomedical Applications.
    Garduño-Juárez R; Tovar-Anaya DO; Perez-Aguilar JM; Lozano-Aguirre Beltran LF; Zubillaga RA; Alvarez-Perez MA; Villarreal-Ramirez E
    Polymers (Basel); 2024 Jun; 16(13):. PubMed ID: 39000719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Simulations Guidelines for Biological Nanomaterials: From Peptides to Membranes.
    Marzuoli I; Fraternali F
    Methods Mol Biol; 2021; 2208():81-100. PubMed ID: 32856257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transferable and Polarizable Coarse Grained Model for Proteins─ProMPT.
    Sahoo A; Lee PY; Matysiak S
    J Chem Theory Comput; 2022 Aug; 18(8):5046-5055. PubMed ID: 35793442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-consistent approach to the derivation of coarse-grained force fields for simulating structure, dynamics, and thermodynamics of biopolymers.
    Liwo A; Czaplewski C; Sieradzan AK; Lubecka EA; Lipska AG; Golon Ł; Karczyńska A; Krupa P; Mozolewska MA; Makowski M; Ganzynkowicz R; Giełdoń A; Maciejczyk M
    Prog Mol Biol Transl Sci; 2020; 170():73-122. PubMed ID: 32145953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained lattice Monte Carlo simulations with continuous interaction potentials.
    Liu X; Seider WD; Sinno T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026708. PubMed ID: 23005883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins.
    Ramakrishnan N; Sunil Kumar PB; Radhakrishnan R
    Phys Rep; 2014 Oct; 543(1):1-60. PubMed ID: 25484487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Coarse-Grained Simulations to Characterize the Mechanisms of Protein-Protein Association.
    Dhusia K; Su Z; Wu Y
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32679892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning coarse-grained potentials of protein thermodynamics.
    Majewski M; Pérez A; Thölke P; Doerr S; Charron NE; Giorgino T; Husic BE; Clementi C; Noé F; De Fabritiis G
    Nat Commun; 2023 Sep; 14(1):5739. PubMed ID: 37714883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curvature-based sorting of eight lipid types in asymmetric buckled plasma membrane models.
    Cino EA; Tieleman DP
    Biophys J; 2022 Jun; 121(11):2060-2068. PubMed ID: 35524412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domain Stability in Biomimetic Membranes Driven by Lipid Polyunsaturation.
    Lin X; Lorent JH; Skinkle AD; Levental KR; Waxham MN; Gorfe AA; Levental I
    J Phys Chem B; 2016 Nov; 120(46):11930-11941. PubMed ID: 27797198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical View of the Martini Force Field.
    Bruininks BMH; Souza PCT; Marrink SJ
    Methods Mol Biol; 2019; 2022():105-127. PubMed ID: 31396901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.