These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38413331)
1. Hydrogen production and solar energy storage with thermo-electrochemically enhanced steam methane reforming. Guo K; Liu M; Wang B; Lou J; Hao Y; Pei G; Jin H Sci Bull (Beijing); 2024 Apr; 69(8):1109-1121. PubMed ID: 38413331 [TBL] [Abstract][Full Text] [Related]
2. Recent Advances in Solar Thermal Electrochemical Process (STEP) for Carbon Neutral Products and High Value Nanocarbons. Ren J; Yu A; Peng P; Lefler M; Li FF; Licht S Acc Chem Res; 2019 Nov; 52(11):3177-3187. PubMed ID: 31697061 [TBL] [Abstract][Full Text] [Related]
3. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen. Shagdar E; Lougou BG; Shuai Y; Ganbold E; Chinonso OP; Tan H RSC Adv; 2020 Mar; 10(21):12582-12597. PubMed ID: 35497614 [TBL] [Abstract][Full Text] [Related]
4. A PVTC system integrating photon-enhanced thermionic emission and methane reforming for efficient solar power generation. Li W; Wang H; Hao Y Sci Bull (Beijing); 2017 Oct; 62(20):1380-1387. PubMed ID: 36659373 [TBL] [Abstract][Full Text] [Related]
5. Emerging trends in hydrogen and synfuel generation: a state-of-the-art review. Alhassan M; Jalil AA; Owgi AHK; Hamid MYS; Bahari MB; Van Tran T; Nabgan W; Hatta AH; Khusnun NFB; Amusa AA; Nyakuma BB Environ Sci Pollut Res Int; 2024 Jun; 31(30):42640-42671. PubMed ID: 38902444 [TBL] [Abstract][Full Text] [Related]
6. Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming. Wang H; Wang B; Lundin SB; Kong H; Su B; Wang J Molecules; 2021 Nov; 26(22):. PubMed ID: 34834013 [TBL] [Abstract][Full Text] [Related]
7. Revisiting the role of steam methane reforming with CO Navas-Anguita Z; GarcĂa-Gusano D; Dufour J; Iribarren D Sci Total Environ; 2021 Jun; 771():145432. PubMed ID: 33736161 [TBL] [Abstract][Full Text] [Related]
8. Contemporary avenues of the Hydrogen industry: Opportunities and challenges in the eco-friendly approach. Qureshi F; Yusuf M; Ibrahim H; Kamyab H; Chelliapan S; Pham CQ; Vo DN Environ Res; 2023 Jul; 229():115963. PubMed ID: 37105287 [TBL] [Abstract][Full Text] [Related]
9. Photobiohydrogen Production and Strategies for H Khetkorn W; Raksajit W; Maneeruttanarungroj C; Lindblad P Adv Biochem Eng Biotechnol; 2023; 183():253-279. PubMed ID: 37009974 [TBL] [Abstract][Full Text] [Related]
10. Linking Life Cycle and Integrated Assessment Modeling to Evaluate Technologies in an Evolving System Context: A Power-to-Hydrogen Case Study for the United States. Lamers P; Ghosh T; Upasani S; Sacchi R; Daioglou V Environ Sci Technol; 2023 Feb; 57(6):2464-2473. PubMed ID: 36724208 [TBL] [Abstract][Full Text] [Related]
11. Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production. Rahman MZ; Mullins CB Acc Chem Res; 2019 Jan; 52(1):248-257. PubMed ID: 30596234 [TBL] [Abstract][Full Text] [Related]
12. Prefeasibility analysis of biomass gasification and electrolysis for hydrogen production. Garcia-Vallejo MC; Cardona Alzate CA Environ Res; 2024 May; 248():118003. PubMed ID: 38163544 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical Splitting of Methane in Molten Salts To Produce Hydrogen. Fan Z; Xiao W Angew Chem Int Ed Engl; 2021 Mar; 60(14):7664-7668. PubMed ID: 33427374 [TBL] [Abstract][Full Text] [Related]
14. A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis. Han B; Wei W; Li M; Sun K; Hu YH Chem Commun (Camb); 2019 Jul; 55(54):7816-7819. PubMed ID: 31215574 [TBL] [Abstract][Full Text] [Related]
15. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses. Kumar B; Kumar S; Sinha S; Kumar S Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868 [TBL] [Abstract][Full Text] [Related]
16. Assessment of hydrogen production from municipal solid wastes as competitive route to produce low-carbon H Borgogna A; Centi G; Iaquaniello G; Perathoner S; Papanikolaou G; Salladini A Sci Total Environ; 2022 Jun; 827():154393. PubMed ID: 35271922 [TBL] [Abstract][Full Text] [Related]
17. Recent Progress in Energy-Driven Water Splitting. Tee SY; Win KY; Teo WS; Koh LD; Liu S; Teng CP; Han MY Adv Sci (Weinh); 2017 May; 4(5):1600337. PubMed ID: 28546906 [TBL] [Abstract][Full Text] [Related]
18. Electrified methane steam reforming on a washcoated SiSiC foam for low-carbon hydrogen production. Zheng L; Ambrosetti M; Marangoni D; Beretta A; Groppi G; Tronconi E AIChE J; 2023 Jan; 69(1):e17620. PubMed ID: 37034314 [TBL] [Abstract][Full Text] [Related]
19. Alkaline thermal treatment of seaweed for high-purity hydrogen production with carbon capture and storage potential. Zhang K; Kim WJ; Park AA Nat Commun; 2020 Jul; 11(1):3783. PubMed ID: 32728021 [TBL] [Abstract][Full Text] [Related]
20. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]