These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38413744)

  • 1. Unraveling the multifaceted effects of climatic factors on mountain pine beetle and its interaction with fungal symbionts.
    Zaman R; Shah A; Shah A; Ullah A; Ishangulyyeva G; Erbilgin N
    Glob Chang Biol; 2024 Mar; 30(3):e17207. PubMed ID: 38413744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid monoterpene induction promotes the susceptibility of a novel host pine to mountain pine beetle colonization but not to beetle-vectored fungi.
    Cale JA; Muskens M; Najar A; Ishangulyyeva G; Hussain A; Kanekar SS; Klutsch JG; Taft S; Erbilgin N
    Tree Physiol; 2017 Dec; 37(12):1597-1610. PubMed ID: 28985375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion.
    Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N
    Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
    Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N
    Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that Ophiostomatoid Fungal Symbionts of Mountain Pine Beetle Do Not Play a Role in Overcoming Lodgepole Pine Defenses During Mass Attack.
    Fortier CE; Musso AE; Evenden ML; Zaharia LI; Cooke JEK
    Mol Plant Microbe Interact; 2024 May; 37(5):445-458. PubMed ID: 38240660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relative abundance of mountain pine beetle fungal associates through the beetle life cycle in pine trees.
    Khadempour L; LeMay V; Jack D; Bohlmann J; Breuil C
    Microb Ecol; 2012 Nov; 64(4):909-17. PubMed ID: 22735936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beauveria bassiana exhibits strong virulence against Dendroctonus ponderosae in greenhouse and field experiments.
    Fernandez KX; Pokorny S; Ishangulyeva G; Ullah A; Todorova SI; Erbilgin N; Carroll AL; Vederas JC
    Appl Microbiol Biotechnol; 2023 May; 107(10):3341-3352. PubMed ID: 37017732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bark Beetles Utilize Ophiostomatoid Fungi to Circumvent Host Tree Defenses.
    Zaman R; May C; Ullah A; Erbilgin N
    Metabolites; 2023 Feb; 13(2):. PubMed ID: 36837858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel application of RNase H2-dependent quantitative PCR for detection and quantification of Grosmannia clavigera, a mountain pine beetle fungal symbiont, in environmental samples.
    McAllister CH; Fortier CE; St Onge KR; Sacchi BM; Nawrot MJ; Locke T; Cooke JEK
    Tree Physiol; 2018 Mar; 38(3):485-501. PubMed ID: 29329457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pine in Distress: How Infection by Different Pathogenic Fungi Affect Lodgepole Pine Chemical Defenses.
    Zaman R; Antonioli F; Shah A; Ullah A; May C; Klutsch JG; Erbilgin N
    Microb Ecol; 2023 Nov; 86(4):2666-2673. PubMed ID: 37486583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen and Ergosterol Concentrations Varied in Live Jack Pine Phloem Following Inoculations With Fungal Associates of Mountain Pine Beetle.
    Guevara-Rozo S; Hussain A; Cale JA; Klutsch JG; Rajabzadeh R; Erbilgin N
    Front Microbiol; 2020; 11():1703. PubMed ID: 32793164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiological responses of pine defensive metabolites largely lack differences between pine species but vary with eliciting ophiostomatoid fungal species.
    Cale JA; Klutsch JG; Dykstra CB; Peters B; Erbilgin N
    Tree Physiol; 2019 Jul; 39(7):1121-1135. PubMed ID: 30877758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts.
    Goodsman DW; Erbilgin N; Lieffers VJ
    Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring behavioural and physiological adaptations in mountain pine beetle in response to elevated ozone concentrations.
    Zaman R; Shah A; Ishangulyyeva G; Erbilgin N
    Chemosphere; 2024 Aug; 362():142751. PubMed ID: 38960047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees.
    Bleiker KP; Six DL
    Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.
    Cale JA; Collignon RM; Klutsch JG; Kanekar SS; Hussain A; Erbilgin N
    PLoS One; 2016; 11(9):e0162197. PubMed ID: 27583519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in defence responses of Pinus contorta and Pinus banksiana to the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit.
    Arango-Velez A; El Kayal W; Copeland CC; Zaharia LI; Lusebrink I; Cooke JE
    Plant Cell Environ; 2016 Apr; 39(4):726-44. PubMed ID: 26205849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.
    Erbilgin N; Cale JA; Lusebrink I; Najar A; Klutsch JG; Sherwood P; Enrico Bonello P; Evenden ML
    Tree Physiol; 2017 Mar; 37(3):338-350. PubMed ID: 27881799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.
    Arango-Velez A; González LM; Meents MJ; El Kayal W; Cooke BJ; Linsky J; Lusebrink I; Cooke JE
    Tree Physiol; 2014 Nov; 34(11):1220-39. PubMed ID: 24319029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).
    Lahr EC; Sala A
    Environ Entomol; 2016 Dec; 45(6):1463-1475. PubMed ID: 28028093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.