These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38413768)

  • 1. Ursids evolved dietary diversity without major alterations in metabolic rates.
    Carnahan AM; Pagano AM; Christian AL; Rode KD; Robbins CT
    Sci Rep; 2024 Feb; 14(1):4751. PubMed ID: 38413768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ursids evolved early and continuously to be low-protein macronutrient omnivores.
    Robbins CT; Christian AL; Vineyard TG; Thompson D; Knott KK; Tollefson TN; Fidgett AL; Wickersham TA
    Sci Rep; 2022 Sep; 12(1):15251. PubMed ID: 36085304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. REVIEW OF ANESTHETIC PROTOCOLS IN ANDEAN BEARS (
    McEntire MS; Hope KL; Hayek LC; Siegal-Willott JL
    J Zoo Wildl Med; 2020 Mar; 51(1):67-79. PubMed ID: 32212548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into dietary management of polar bears (Ursus maritimus) and brown bears (U. arctos).
    Robbins CT; Tollefson TN; Rode KD; Erlenbach JA; Ardente AJ
    Zoo Biol; 2022 Mar; 41(2):166-175. PubMed ID: 34793606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution.
    Chen L; Ma J; Xu W; Shen F; Yang Z; Sonne C; Dietz R; Li L; Jie X; Li L; Yan G; Zhang X
    Evol Appl; 2024 Jun; 17(6):e13731. PubMed ID: 38894980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.
    Costello CM; Cain SL; Pils S; Frattaroli L; Haroldson MA; van Manen FT
    PLoS One; 2016; 11(5):e0153702. PubMed ID: 27192407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field metabolic rates of giant pandas reveal energetic adaptations.
    Bi W; Hou R; Owens JR; Spotila JR; Valitutto M; Yin G; Paladino FV; Wu F; Qi D; Zhang Z
    Sci Rep; 2021 Nov; 11(1):22391. PubMed ID: 34789821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.
    Cronin MA; Rincon G; Meredith RW; MacNeil MD; Islas-Trejo A; Cánovas A; Medrano JF
    J Hered; 2014; 105(3):312-23. PubMed ID: 24477675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures.
    Donohue SL; DeSantis LR; Schubert BW; Ungar PS
    PLoS One; 2013; 8(10):e77531. PubMed ID: 24204860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).
    Felicetti LA; Robbins CT; Shipley LA
    Physiol Biochem Zool; 2003; 76(2):256-61. PubMed ID: 12794679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel endogenous betaretrovirus group characterized from polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca).
    Mayer J; Tsangaras K; Heeger F; Avila-Arcos M; Stenglein MD; Chen W; Sun W; Mazzoni CJ; Osterrieder N; Greenwood AD
    Virology; 2013 Aug; 443(1):1-10. PubMed ID: 23725819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic relationships of extant brown bears (Ursus arctos) and polar bears (Ursus maritimus).
    Cronin MA; MacNeil MD
    J Hered; 2012; 103(6):873-81. PubMed ID: 23125409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay.
    Gormezano LJ; Rockwell RF
    BMC Ecol; 2013 Dec; 13():51. PubMed ID: 24359342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy digestibility of giant pandas on bamboo-only and on supplemented diets.
    Finley TG; Sikes RS; Parsons JL; Rude BJ; Bissell HA; Ouellette JR
    Zoo Biol; 2011; 30(2):121-33. PubMed ID: 20814990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Study of Gut Microbiota in Wild and Captive Giant Pandas (
    Guo W; Mishra S; Wang C; Zhang H; Ning R; Kong F; Zeng B; Zhao J; Li Y
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31635158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary ecology of Alaskan polar bears (Ursus maritimus) through time and in response to Arctic climate change.
    Petherick AS; Reuther JD; Shirar SJ; Anderson SL; DeSantis LRG
    Glob Chang Biol; 2021 Jul; 27(13):3109-3119. PubMed ID: 33793039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing bamboo intake of captive giant pandas (Ailuropoda melanoleuca).
    Wei M; Zhu Y; Liu W; Li D; Wei R; Deng L; Wu K; Song S; Li T; Zeng W; He Y; Huang S; Wang C
    Sci Rep; 2023 Apr; 13(1):6262. PubMed ID: 37069183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interspecific resource partitioning in sympatric ursids.
    Belant JL; Kielland K; Follmann EH; Adams LG
    Ecol Appl; 2006 Dec; 16(6):2333-43. PubMed ID: 17205908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation.
    Shan L; Wu Q; Wang L; Zhang L; Wei F
    Integr Zool; 2018 Mar; 13(2):152-159. PubMed ID: 29168616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopic Incorporation and the Effects of Fasting and Dietary Lipid Content on Isotopic Discrimination in Large Carnivorous Mammals.
    Rode KD; Stricker CA; Erlenbach J; Robbins CT; Cherry SG; Newsome SD; Cutting A; Jensen S; Stenhouse G; Brooks M; Hash A; Nicassio N
    Physiol Biochem Zool; 2016; 89(3):182-97. PubMed ID: 27153128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.