These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 38413782)

  • 1. Towards unlocking motor control in spinal cord injured by applying an online EEG-based framework to decode motor intention, trajectory and error processing.
    Mondini V; Sburlea AI; Müller-Putz GR
    Sci Rep; 2024 Feb; 14(1):4714. PubMed ID: 38413782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous 2D trajectory decoding from attempted movement: across-session performance in able-bodied and feasibility in a spinal cord injured participant.
    Pulferer HS; Ásgeirsdóttir B; Mondini V; Sburlea AI; Müller-Putz GR
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35443233
    [No Abstract]   [Full Text] [Related]  

  • 3. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals.
    Pereira J; Kobler R; Ofner P; Schwarz A; Müller-Putz GR
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34130267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feel Your Reach: An EEG-Based Framework to Continuously Detect Goal-Directed Movements and Error Processing to Gate Kinesthetic Feedback Informed Artificial Arm Control.
    Müller-Putz GR; Kobler RJ; Pereira J; Lopes-Dias C; Hehenberger L; Mondini V; Martínez-Cagigal V; Srisrisawang N; Pulferer H; Batistić L; Sburlea AI
    Front Hum Neurosci; 2022; 16():841312. PubMed ID: 35360289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting intention to execute the next movement while performing current movement from EEG using global optimal constrained ICA.
    Eilbeigi E; Setarehdan SK
    Comput Biol Med; 2018 Aug; 99():63-75. PubMed ID: 29890509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous decoding of movement intention of upper limb self-initiated analytic movements from pre-movement EEG correlates.
    López-Larraz E; Montesano L; Gil-Agudo Á; Minguez J
    J Neuroeng Rehabil; 2014 Nov; 11():153. PubMed ID: 25398273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding hand movements from human EEG to control a robotic arm in a simulation environment.
    Schwarz A; Höller MK; Pereira J; Ofner P; Müller-Putz GR
    J Neural Eng; 2020 May; 17(3):036010. PubMed ID: 32272464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients.
    Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses in posterior parietal cortex to movement intention task with visual and tactile cues.
    Kamikawa Y; Tanaka T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6654-7. PubMed ID: 26737819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-Based Continuous Hand Movement Decoding Using Improved Center-Out Paradigm.
    Wang J; Bi L; Fei W; Tian K
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2845-2855. PubMed ID: 36191111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding trajectories of imagined hand movement using electrocorticograms for brain-machine interface.
    Jang SJ; Yang YJ; Ryun S; Kim JS; Chung CK; Jeong J
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35985293
    [No Abstract]   [Full Text] [Related]  

  • 18. 3D hand motion trajectory prediction from EEG mu and beta bandpower.
    Korik A; Sosnik R; Siddique N; Coyle D
    Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings.
    Li G; Jiang S; Meng J; Chai G; Wu Z; Fan Z; Hu J; Sheng X; Zhang D; Chen L; Zhu X
    Neuroimage; 2022 Apr; 250():118969. PubMed ID: 35124225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting intention to grasp during reaching movements from EEG.
    Randazzo L; Iturrate I; Chavarriaga R; Leeb R; Del Millan JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1115-8. PubMed ID: 26736461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.