BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 38413888)

  • 21. Analysis of gene co-expression networks and function modules at different developmental stages of chicken breast muscle.
    Li G; Zhang T; Zhang G; Chen L; Han W; Guojun Dai ; Xie K; Zhu X; Su Y; Wang J
    Biochem Biophys Res Commun; 2019 Jan; 508(1):177-183. PubMed ID: 30471858
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weighted gene co-expression network analysis identified hub genes critical to fatty acid composition in Gushi chicken breast muscle.
    Zhai B; Zhao Y; Li H; Li S; Gu J; Zhang H; Zhang Y; Li H; Tian Y; Li G; Wang Y
    BMC Genomics; 2023 Oct; 24(1):594. PubMed ID: 37805512
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of key differentially methylated genes in regulating muscle development and intramuscular fat deposition in chickens.
    Yu B; Cai Z; Liu J; Zhang T; Feng X; Wang C; Li J; Gu Y; Zhang J
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130737. PubMed ID: 38460642
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep.
    Han F; Li J; Zhao R; Liu L; Li L; Li Q; He J; Liu N
    BMC Genomics; 2021 Feb; 22(1):98. PubMed ID: 33526009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SLC16A7 Promotes Triglyceride Deposition by De Novo Lipogenesis in Chicken Muscle Tissue.
    Wang Y; Liu L; Liu X; Tan X; Zhu Y; Luo N; Zhao G; Cui H; Wen J
    Biology (Basel); 2022 Oct; 11(11):. PubMed ID: 36358250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle Transcriptome Analysis Reveals Potential Candidate Genes and Pathways Affecting Intramuscular Fat Content in Pigs.
    Zhao X; Hu H; Lin H; Wang C; Wang Y; Wang J
    Front Genet; 2020; 11():877. PubMed ID: 32849841
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content.
    Kang H; Zhao D; Xiang H; Li J; Zhao G; Li H
    Genet Sel Evol; 2021 Aug; 53(1):66. PubMed ID: 34399688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic insights into the contribution of de novo lipogenesis to intramuscular fat deposition in chicken.
    Cui H; Wang Y; Zhu Y; Liu X; Liu L; Wang J; Tan X; Wang Y; Xing S; Luo N; Liu L; Liu R; Zheng M; Zhao G; Wen J
    J Adv Res; 2023 Dec; ():. PubMed ID: 38065407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Analysis Reveals the Age-Related Developmental Dynamics Pattern of the
    Liufu S; Lan Q; Liu X; Chen B; Xu X; Ai N; Li X; Yu Z; Ma H
    Genes (Basel); 2023 May; 14(5):. PubMed ID: 37239410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory role of N
    Zhang T; Yu B; Cai Z; Jiang Q; Fu X; Zhao W; Wang H; Gu Y; Zhang J
    Poult Sci; 2023 Oct; 102(10):102972. PubMed ID: 37573849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomic Insights into Molecular Regulation Mechanisms of Intramuscular Fat Deposition in Chicken.
    Cao Y; Xing Y; Guan H; Ma C; Jia Q; Tian W; Li G; Tian Y; Kang X; Liu X; Li H
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptome Profiling of Different Developmental Stages on Longissimus Dorsi to Identify Genes Underlying Intramuscular Fat Content in Wannanhua Pigs.
    Li X; Yang Y; Li L; Ren M; Zhou M; Li S
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of differentially expressed genes related to triglyceride metabolism between intramuscular fat and abdominal fat in broilers.
    Liu L; Cui HX; Zheng MQ; Zhao GP; Wen J
    Br Poult Sci; 2018 Oct; 59(5):514-520. PubMed ID: 29939074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower Expression of
    Qiu F; Xie L; Ma JE; Luo W; Zhang L; Chao Z; Chen S; Nie Q; Lin Z; Zhang X
    Front Physiol; 2017; 8():449. PubMed ID: 28706492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs.
    Wang Y; Ma C; Sun Y; Li Y; Kang L; Jiang Y
    BMC Genomics; 2017 Oct; 18(1):780. PubMed ID: 29025412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Divergent Selection for Intramuscular Fat Content on Muscle Lipid Metabolism in Chickens.
    Liu L; Cui H; Xing S; Zhao G; Wen J
    Animals (Basel); 2019 Dec; 10(1):. PubMed ID: 31861430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle.
    Ramayo-Caldas Y; Fortes MR; Hudson NJ; Porto-Neto LR; Bolormaa S; Barendse W; Kelly M; Moore SS; Goddard ME; Lehnert SA; Reverter A
    J Anim Sci; 2014 Jul; 92(7):2832-45. PubMed ID: 24778332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.
    Li B; Weng Q; Dong C; Zhang Z; Li R; Liu J; Jiang A; Li Q; Jia C; Wu W; Liu H
    Genes (Basel); 2018 Apr; 9(4):. PubMed ID: 29617344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs.
    Yousuf S; Li A; Feng H; Lui T; Huang W; Zhang X; Xie L; Miao X
    Cells; 2022 Aug; 11(17):. PubMed ID: 36078046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens.
    Fu RQ; Liu RR; Zhao GP; Zheng MQ; Chen JL; Wen J
    Gene; 2014 Mar; 537(1):120-5. PubMed ID: 24100085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.