BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38414331)

  • 1. Porous Polymeric Nanofilms for Recreating the Basement Membrane in an Endothelial Barrier-on-Chip.
    Mancinelli E; Zushi N; Takuma M; Cheng Chau CC; Parpas G; Fujie T; Pensabene V
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13006-13017. PubMed ID: 38414331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recreating cellular barriers in human microphysiological systems in-vitro.
    Mancinelli E; Takuma M; Fujie T; Pensabene V
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3923-3926. PubMed ID: 36086504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable Microstructured Membranes in Organs-on-Chips to Monitor Transendothelial Hydraulic Resistance.
    Das P; van der Meer AD; Vivas A; Arik YB; Remigy JC; Lahitte JF; Lammertink RGH; Bacchin P
    Tissue Eng Part A; 2019 Dec; 25(23-24):1635-1645. PubMed ID: 30957672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PDMS Sylgard 527-Based Freely Suspended Ultrathin Membranes Exhibiting Mechanistic Characteristics of Vascular Basement Membranes.
    Rathod ML; Ahn J; Saha B; Purwar P; Lee Y; Jeon NL; Lee J
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40388-40400. PubMed ID: 30360091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.
    Pensabene V; Costa L; Terekhov AY; Gnecco JS; Wikswo JP; Hofmeister WH
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22629-36. PubMed ID: 27513606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-thin and ultra-porous nanofiber networks as a basement-membrane mimic.
    Graybill PM; Jacobs EJ; Jana A; Agashe A; Nain AS; Davalos RV
    Lab Chip; 2023 Oct; 23(20):4565-4578. PubMed ID: 37772328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Artificial Nanobasement Membranes for Cell Compartmentalization in 3D Tissues.
    Zeng J; Sasaki N; Correia CR; Mano JF; Matsusaki M
    Small; 2020 Jun; 16(24):e1907434. PubMed ID: 32372510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymeric Microporous Nanofilms as Smart Platforms for in Vitro Assessment of Nanoparticle Translocation and Caco-2 Cell Culture.
    Ricotti L; Gori G; Cei D; Costa J; Signore G; Ahluwalia A
    IEEE Trans Nanobioscience; 2016 Oct; 15(7):689-696. PubMed ID: 27576259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture.
    Mondrinos MJ; Yi YS; Wu NK; Ding X; Huh D
    Lab Chip; 2017 Sep; 17(18):3146-3158. PubMed ID: 28809418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin transparent membranes for cellular barrier and co-culture models.
    Carter RN; Casillo SM; Mazzocchi AR; DesOrmeaux JS; Roussie JA; Gaborski TR
    Biofabrication; 2017 Feb; 9(1):015019. PubMed ID: 28140345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid elastomer-plastic microfluidic device as a convenient model for mimicking the blood-brain barrier in vitro.
    Nguyen PQH; Duong DD; Kwun JD; Lee NY
    Biomed Microdevices; 2019 Nov; 21(4):90. PubMed ID: 31686217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabricated tuneable and transferable porous PDMS membranes for Organs-on-Chips.
    Quirós-Solano WF; Gaio N; Stassen OMJA; Arik YB; Silvestri C; Van Engeland NCA; Van der Meer A; Passier R; Sahlgren CM; Bouten CVC; van den Berg A; Dekker R; Sarro PM
    Sci Rep; 2018 Sep; 8(1):13524. PubMed ID: 30202042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips.
    J Vis Exp; 2019 May; (147):. PubMed ID: 31067212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An endothelial and astrocyte co-culture model of the blood-brain barrier utilizing an ultra-thin, nanofabricated silicon nitride membrane.
    Ma SH; Lepak LA; Hussain RJ; Shain W; Shuler ML
    Lab Chip; 2005 Jan; 5(1):74-85. PubMed ID: 15616743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin Dual-Scale Nano- and Microporous Membranes for Vascular Transmigration Models.
    Salminen AT; Zhang J; Madejski GR; Khire TS; Waugh RE; McGrath JL; Gaborski TR
    Small; 2019 Feb; 15(6):e1804111. PubMed ID: 30632319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Cross-Linking of Artificial Basement Membranes in 3D Tissues and Their Size-Dependent Molecular Permeability.
    Zeng J; Correia CR; Mano JF; Matsusaki M
    Biomacromolecules; 2020 Dec; 21(12):4923-4932. PubMed ID: 33099998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous honeycomb film membranes enhance endothelial barrier integrity in human vascular wall bilayer model compared to standard track-etched membranes.
    Ebrahim NA; Mwizerwa ON; Ekwueme EC; Muss TE; Ersland EE; Oba T; Oku K; Nishino M; Hikimoto D; Miyoshi H; Tomotoshi K; Neville CM; Sundback CA
    J Biomed Mater Res A; 2023 May; 111(5):701-713. PubMed ID: 36807502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Electrospun Membranes into Low-Absorption Thermoplastic Organ-on-Chip.
    Chuchuy J; Rogal J; Ngo T; Stadelmann K; Antkowiak L; Achberger K; Liebau S; Schenke-Layland K; Loskill P
    ACS Biomater Sci Eng; 2021 Jul; 7(7):3006-3017. PubMed ID: 33591723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Thin Porous PDLLA Films Promote Generation, Maintenance, and Viability of Stem Cell Spheroids.
    Tsai YA; Li T; Torres-Fernández LA; Weise SC; Kolanus W; Takeoka S
    Front Bioeng Biotechnol; 2021; 9():674384. PubMed ID: 34195179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Fabrication of Freestanding Polymer Ultrathin Porous Membranes for Transparent Transwell Coculture Systems.
    Gao Y; Zhong M; Yu J; Zhao Z; Yu C; Yu Q; Yao F; Li J; Zhang H
    ACS Nano; 2024 Mar; 18(11):8168-8179. PubMed ID: 38437515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.