These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 38414834)

  • 1. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces.
    Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2844-2855. PubMed ID: 38414834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
    Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG
    Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field.
    Ludwig J; Vlachos DG; van Duin AC; Goddard WA
    J Phys Chem B; 2006 Mar; 110(9):4274-82. PubMed ID: 16509724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethane and Propane Dehydrogenation on Small Platinum Clusters Supported on Silica: An Ab Initio Molecular Dynamics and DFT Study.
    Kumar P; Srivastava VC
    Chempluschem; 2024 Feb; 89(2):e202300347. PubMed ID: 37937860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a ReaxFF Reactive Force Field for the Pt-Ni Alloy Catalyst.
    Shin YK; Gai L; Raman S; van Duin ACT
    J Phys Chem A; 2016 Oct; 120(41):8044-8055. PubMed ID: 27670674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Pt-based catalysts for propane dehydrogenation
    Zha S; Sun G; Wu T; Zhao J; Zhao ZJ; Gong J
    Chem Sci; 2018 Apr; 9(16):3925-3931. PubMed ID: 29780524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alkaline-earth ion stabilized sub-nano-platinum tin clusters for propane dehydrogenation.
    Lu Z; Luo R; Chen S; Fu D; Sun G; Zhao ZJ; Pei C; Gong J
    Chem Sci; 2024 Jan; 15(3):1046-1050. PubMed ID: 38239696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the catalytic performance of single platinum anchored on graphene by vacancy engineering for propane dehydrogenation: a theoretical study.
    Zhai Z; Zhang B; Wang L; Zhang X; Liu G
    Phys Chem Chem Phys; 2021 Oct; 23(38):22004-22013. PubMed ID: 34569572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation.
    Nakaya Y; Hirayama J; Yamazoe S; Shimizu KI; Furukawa S
    Nat Commun; 2020 Jun; 11(1):2838. PubMed ID: 32503995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation.
    Zhou SZ; Li WC; He B; Xie YD; Wang H; Liu X; Chen L; Wei J; Lu AH
    Angew Chem Int Ed Engl; 2024 Jul; ():e202410835. PubMed ID: 39044707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tricoordinated Single-Atom Cobalt in Zeolite Boosting Propane Dehydrogenation.
    Qu Z; He G; Zhang T; Fan Y; Guo Y; Hu M; Xu J; Ma Y; Zhang J; Fan W; Sun Q; Mei D; Yu J
    J Am Chem Soc; 2024 Apr; 146(13):8939-8948. PubMed ID: 38526452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes.
    Hauser AW; Gomes J; Bajdich M; Head-Gordon M; Bell AT
    Phys Chem Chem Phys; 2013 Dec; 15(47):20727-34. PubMed ID: 24196250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress in catalytic dehydrogenation of propane over Pt-based catalysts.
    Shan Y; Hu H; Fan X; Zhao Z
    Phys Chem Chem Phys; 2023 Jul; 25(28):18609-18622. PubMed ID: 37404043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation.
    Sun G; Zhao ZJ; Mu R; Zha S; Li L; Chen S; Zang K; Luo J; Li Z; Purdy SC; Kropf AJ; Miller JT; Zeng L; Gong J
    Nat Commun; 2018 Oct; 9(1):4454. PubMed ID: 30367052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical insights into non-oxidative propane dehydrogenation over Fe
    Wang P; Senftle TP
    Phys Chem Chem Phys; 2021 Jan; 23(2):1401-1413. PubMed ID: 33393543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation.
    Fantauzzi D; Bandlow J; Sabo L; Mueller JE; van Duin AC; Jacob T
    Phys Chem Chem Phys; 2014 Nov; 16(42):23118-33. PubMed ID: 25250822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane.
    Tan C; Liu H; Qin Y; Li L; Wang H; Zhu X; Ge Q
    Chemphyschem; 2023 Feb; 24(4):e202200539. PubMed ID: 36223257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation.
    Zhou J; Sun Q; Qin Y; Liu H; Hu P; Xiong C; Ji H
    J Colloid Interface Sci; 2024 Jun; 663():94-102. PubMed ID: 38394821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.