These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 38415109)

  • 1. CSANet: a lightweight channel and spatial attention neural network for grading diabetic retinopathy with optical coherence tomography angiography.
    Ma F; Liu X; Wang S; Li S; Dai C; Meng J
    Quant Imaging Med Surg; 2024 Feb; 14(2):1820-1834. PubMed ID: 38415109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale multi-attention network for diabetic retinopathy grading.
    Xia H; Long J; Song S; Tan Y
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035368
    [No Abstract]   [Full Text] [Related]  

  • 3. Coarse-to-fine classification for diabetic retinopathy grading using convolutional neural network.
    Wu Z; Shi G; Chen Y; Shi F; Chen X; Coatrieux G; Yang J; Luo L; Li S
    Artif Intell Med; 2020 Aug; 108():101936. PubMed ID: 32972665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An interpretable dual attention network for diabetic retinopathy grading: IDANet.
    Bhati A; Gour N; Khanna P; Ojha A; Werghi N
    Artif Intell Med; 2024 Mar; 149():102782. PubMed ID: 38462283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography.
    Heisler M; Karst S; Lo J; Mammo Z; Yu T; Warner S; Maberley D; Beg MF; Navajas EV; Sarunic MV
    Transl Vis Sci Technol; 2020 Apr; 9(2):20. PubMed ID: 32818081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new retinal OCT-angiography diabetic retinopathy dataset for segmentation and DR grading.
    Ma F; Wang S; Dai C; Qi F; Meng J
    J Biophotonics; 2023 Nov; 16(11):e202300052. PubMed ID: 37421596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnosing Diabetic Retinopathy in OCTA Images Based on Multilevel Information Fusion Using a Deep Learning Framework.
    Li Q; Zhu XR; Sun G; Zhang L; Zhu M; Tian T; Guo C; Mazhar S; Yang JK; Li Y
    Comput Math Methods Med; 2022; 2022():4316507. PubMed ID: 35966243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing deep learning for detection of diabetic retinopathy in geriatric group using optical coherence tomography angiography-OCTA: A promising approach.
    Bidwai P; Gite S; Pradhan B; Gupta H; Alamri A
    MethodsX; 2024 Dec; 13():102910. PubMed ID: 39280760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading.
    He A; Li T; Li N; Wang K; Fu H
    IEEE Trans Med Imaging; 2021 Jan; 40(1):143-153. PubMed ID: 32915731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic severity grade classification of diabetic retinopathy using deformable ladder Bi attention U-net and deep adaptive CNN.
    Durai DBJ; Jaya T
    Med Biol Eng Comput; 2023 Aug; 61(8):2091-2113. PubMed ID: 37338737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading.
    Li H; Dong X; Shen W; Ge F; Li H
    Comput Biol Med; 2022 Oct; 149():105970. PubMed ID: 36058067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep attentive convolutional neural network for automatic grading of imbalanced diabetic retinopathy in retinal fundus images.
    Li F; Tang S; Chen Y; Zou H
    Biomed Opt Express; 2022 Nov; 13(11):5813-5835. PubMed ID: 36733744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques.
    Yasser I; Khalifa F; Abdeltawab H; Ghazal M; Sandhu HS; El-Baz A
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images.
    Eladawi N; Elmogy M; Khalifa F; Ghazal M; Ghazi N; Aboelfetouh A; Riad A; Sandhu H; Schaal S; El-Baz A
    Med Phys; 2018 Oct; 45(10):4582-4599. PubMed ID: 30144102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy.
    Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X
    Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine-grained attention & knowledge-based collaborative network for diabetic retinopathy grading.
    Tian M; Wang H; Sun Y; Wu S; Tang Q; Zhang M
    Heliyon; 2023 Jul; 9(7):e17217. PubMed ID: 37449186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence tomography angiography images.
    Qian B; Chen H; Wang X; Guan Z; Li T; Jin Y; Wu Y; Wen Y; Che H; Kwon G; Kim J; Choi S; Shin S; Krause F; Unterdechler M; Hou J; Feng R; Li Y; El Habib Daho M; Yang D; Wu Q; Zhang P; Yang X; Cai Y; Tan GSW; Cheung CY; Jia W; Li H; Tham YC; Wong TY; Sheng B
    Patterns (N Y); 2024 Mar; 5(3):100929. PubMed ID: 38487802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction Between the Distribution of Diabetic Retinopathy Lesions and the Association of Optical Coherence Tomography Angiography Scans With Diabetic Retinopathy Severity.
    Ashraf M; Sampani K; Rageh A; Silva PS; Aiello LP; Sun JK
    JAMA Ophthalmol; 2020 Dec; 138(12):1291-1297. PubMed ID: 33119083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Diabetic Retinopathy Staging with a Deep Convolutional Neural Network Using Ultra-Wide-Field Fundus Ophthalmoscopy and Optical Coherence Tomography Angiography.
    Nagasawa T; Tabuchi H; Masumoto H; Morita S; Niki M; Ohara Z; Yoshizumi Y; Mitamura Y
    J Ophthalmol; 2021; 2021():6651175. PubMed ID: 33884202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.