These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38415322)

  • 1. Quasi-Solid Sulfur Conversion for Energetic All-Solid-State Na-S Battery.
    Zhang H; Wang M; Song B; Huang XL; Zhang W; Zhang E; Cheng Y; Lu K
    Angew Chem Int Ed Engl; 2024 May; 63(19):e202402274. PubMed ID: 38415322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary Atomic Sites Enable a Confined Bidirectional Tandem Electrocatalytic Sulfur Conversion for Low-Temperature All-Solid-State Na-S Batteries.
    Zhang W; Wang M; Zhang H; Huang X; Shen B; Song B; Fu L; Lu K
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202317776. PubMed ID: 38117014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional Tandem Electrocatalysis Manipulated Sulfur Speciation Pathway for High-Capacity and Stable Na-S Battery.
    Zhang H; Song B; Zhang W; An B; Fu L; Lu S; Cheng Y; Chen Q; Lu K
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202217009. PubMed ID: 36494321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Reversible Room-Temperature Sulfur/Long-Chain Sodium Polysulfide Batteries.
    Yu X; Manthiram A
    J Phys Chem Lett; 2014 Jun; 5(11):1943-7. PubMed ID: 26273877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalysis in Room Temperature Sodium-Sulfur Batteries: Tunable Pathway of Sulfur Speciation.
    Wang M; Zhang H; Zhang W; Chen Q; Lu K
    Small Methods; 2022 Jul; 6(7):e2200335. PubMed ID: 35560544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid/Quasi-Solid Phase Conversion of Sulfur in Lithium-Sulfur Battery.
    Li X; Yuan L; Liu D; Xiang J; Li Z; Huang Y
    Small; 2022 Oct; 18(43):e2106970. PubMed ID: 35218289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-step Controllable Catalysis Method for the Defense of Sodium Polysulfide Dissolution in Room-Temperature Na-S Batteries.
    Ma Q; Zhong W; Du G; Qi Y; Bao SJ; Xu M; Li C
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11852-11860. PubMed ID: 33656849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Conversion Kinetics through Electron Density Dual-Regulation of Catalysts and Sulfur toward Room-/Subzero-Temperature Na-S Batteries.
    Luo S; Ruan J; Wang Y; Chen M; Wu L
    Adv Sci (Weinh); 2024 Jun; 11(21):e2308180. PubMed ID: 38594907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Stable Quasi-Solid-State Sodium-Sulfur Battery.
    Zhou D; Chen Y; Li B; Fan H; Cheng F; Shanmukaraj D; Rojo T; Armand M; Wang G
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10168-10172. PubMed ID: 29947070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium-Sulfur Batteries.
    Wang C; Lu JH; Wang AB; Zhang H; Wang WK; Jin ZQ; Fan LZ
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Catalysis Promoted Activation of Sulfur Redox Chemistry for Energy-Dense Flexible Solid-State Zn-S Battery.
    Zhang H; Shang Z; Luo G; Jiao S; Cao R; Chen Q; Lu K
    ACS Nano; 2022 May; 16(5):7344-7351. PubMed ID: 34889091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalyzing S Cathodes
    Liu H; Pei W; Lai WH; Yan Z; Yang H; Lei Y; Wang YX; Gu Q; Zhou S; Chou S; Liu HK; Dou SX
    ACS Nano; 2020 Jun; 14(6):7259-7268. PubMed ID: 32433868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional Confined Redox Catalysis Manipulated Quasi-Solid Iodine Conversion for Shuttle-Free Solid-State Zn-I
    Wang M; Ma J; Zhang H; Fu L; Li X; Lu K
    Small; 2024 Mar; 20(12):e2307021. PubMed ID: 37940629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalysis for Continuous Multi-Step Reactions in Quasi-Solid-State Electrolytes Towards High-Energy and Long-Life Aluminum-Sulfur Batteries.
    Huang Z; Wang W; Song WL; Wang M; Chen H; Jiao S; Fang D
    Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202202696. PubMed ID: 35384209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Catalytic and Quasi-Solid Sulfur Conversion for High-Capacity Lean Lithium Sulfur Batteries.
    Lu K; Liu Y; Chen J; Zhang Z; Cheng Y
    ACS Nano; 2019 Dec; 13(12):14540-14548. PubMed ID: 31742996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nontraditional Approaches To Enable High-Energy and Long-Life Lithium-Sulfur Batteries.
    Zhao C; Amine K; Xu GL
    Acc Chem Res; 2023 Oct; 56(19):2700-2712. PubMed ID: 37728762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polar Electrocatalysts for Preventing Polysulfide Migration and Accelerating Redox Kinetics in Room-Temperature Sodium-Sulfur Batteries.
    Wang P; Sun S; Rui X; Zhang Y; Wang S; Xiao Y; Fang S; Yu Y
    Small Methods; 2023 Jun; 7(6):e2201728. PubMed ID: 36995022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic Promoters for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Zhao M; Peng HJ; Li BQ; Huang JQ
    Acc Chem Res; 2024 Feb; ():. PubMed ID: 38319810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Atom Iron and Doped Sulfur Improve the Catalysis of Polysulfide Conversion for Obtaining High-Performance Lithium-Sulfur Batteries.
    Zhao H; Tian B; Su C; Li Y
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7171-7177. PubMed ID: 33528984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating Redox Kinetics using p-n Heterojunction Biservice Matrix as both Cathode Sulfur Immobilizer and Anode Lithium Stabilizer for Practical Lithium-Sulfur Batteries.
    Du X; Wen C; Luo Y; Luo D; Yang T; Wu L; Li J; Liu G; Chen Z
    Small; 2023 Nov; 19(47):e2304131. PubMed ID: 37486972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.