These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38415349)

  • 41. A transient definitive erythroid lineage with unique regulation of the β-globin locus in the mammalian embryo.
    McGrath KE; Frame JM; Fromm GJ; Koniski AD; Kingsley PD; Little J; Bulger M; Palis J
    Blood; 2011 Apr; 117(17):4600-8. PubMed ID: 21378272
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The histone methyltransferase Setd8 alters the chromatin landscape and regulates the expression of key transcription factors during erythroid differentiation.
    Myers JA; Couch T; Murphy Z; Malik J; Getman M; Steiner LA
    Epigenetics Chromatin; 2020 Mar; 13(1):16. PubMed ID: 32178723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The developmental switch in embryonic rho-globin expression is correlated with erythroid lineage-specific differences in transcription factor levels.
    Minie ME; Kimura T; Felsenfeld G
    Development; 1992 Aug; 115(4):1149-64. PubMed ID: 1451662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development and differentiation of the erythroid lineage in mammals.
    Barminko J; Reinholt B; Baron MH
    Dev Comp Immunol; 2016 May; 58():18-29. PubMed ID: 26709231
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1.
    Fujiwara Y; Browne CP; Cunniff K; Goff SC; Orkin SH
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12355-8. PubMed ID: 8901585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cul4a promotes zebrafish primitive erythropoiesis via upregulating scl and gata1 expression.
    Yang F; Hu H; Liu Y; Shao M; Shao C; Gong Y
    Cell Death Dis; 2019 May; 10(6):388. PubMed ID: 31101894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Delayed hemoglobin switching and perinatal neocytolysis in mice with gain-of-function erythropoietin receptor.
    Divoky V; Song J; Horvathova M; Kralova B; Votavova H; Prchal JT; Yoon D
    J Mol Med (Berl); 2016 May; 94(5):597-608. PubMed ID: 26706855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinct gene expression program dynamics during erythropoiesis from human induced pluripotent stem cells compared with adult and cord blood progenitors.
    Merryweather-Clarke AT; Tipping AJ; Lamikanra AA; Fa R; Abu-Jamous B; Tsang HP; Carpenter L; Robson KJ; Nandi AK; Roberts DJ
    BMC Genomics; 2016 Oct; 17(1):817. PubMed ID: 27769165
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GATA-1 regulates growth and differentiation of definitive erythroid lineage cells during in vitro ES cell differentiation.
    Suwabe N; Takahashi S; Nakano T; Yamamoto M
    Blood; 1998 Dec; 92(11):4108-18. PubMed ID: 9834216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dynamics of alpha-globin locus chromatin structure and gene expression during erythroid differentiation of human CD34(+) cells in culture.
    Mahajan MC; Karmakar S; Newburger PE; Krause DS; Weissman SM
    Exp Hematol; 2009 Oct; 37(10):1143-1156.e3. PubMed ID: 19607874
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coordinated changes in gene expression kinetics underlie both mouse and human erythroid maturation.
    Barile M; Imaz-Rosshandler I; Inzani I; Ghazanfar S; Nichols J; Marioni JC; Guibentif C; Göttgens B
    Genome Biol; 2021 Jul; 22(1):197. PubMed ID: 34225769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interaction of the Macrophage and Primitive Erythroid Lineages in the Mammalian Embryo.
    Palis J
    Front Immunol; 2016; 7():669. PubMed ID: 28119687
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Sclerotome-derived PDGF signaling functions as a niche cue responsible for primitive erythropoiesis.
    Mao A; Li Z; Ning G; Zhou Z; Wei C; Li J; He X; Wang Q
    Development; 2023 Nov; 150(22):. PubMed ID: 37882745
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DOT1L Methyltransferase Regulates Calcium Influx in Erythroid Progenitor Cells in Response to Erythropoietin.
    Feng Y; Borosha S; Ratri A; Lee EB; Wang H; Fields TA; Kinsey WH; Vivian JL; Rumi MAK; Fields PE
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential effects of GATA-1 on proliferation and differentiation of erythroid lineage cells.
    Zheng J; Kitajima K; Sakai E; Kimura T; Minegishi N; Yamamoto M; Nakano T
    Blood; 2006 Jan; 107(2):520-7. PubMed ID: 16174764
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells.
    Simon MC; Pevny L; Wiles MV; Keller G; Costantini F; Orkin SH
    Nat Genet; 1992 May; 1(2):92-8. PubMed ID: 1302015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Erythropoiesis and red cell function in vertebrate embryos.
    Baumann R; Dragon S
    Eur J Clin Invest; 2005 Dec; 35 Suppl 3():2-12. PubMed ID: 16281952
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.
    Sturgeon CM; Chicha L; Ditadi A; Zhou Q; McGrath KE; Palis J; Hammond SM; Wang S; Olson EN; Keller G
    Dev Cell; 2012 Jul; 23(1):45-57. PubMed ID: 22749417
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transcription factor GATA-1 and erythroid development.
    Simon MC
    Proc Soc Exp Biol Med; 1993 Feb; 202(2):115-21. PubMed ID: 8424101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos.
    Galloway JL; Wingert RA; Thisse C; Thisse B; Zon LI
    Dev Cell; 2005 Jan; 8(1):109-16. PubMed ID: 15621534
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.