These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38415379)

  • 1. Electrochemical Capacitance Traces with Interlayer Spacing in Two-dimensional Conductive Metal-Organic Frameworks.
    Su AY; Apostol P; Wang J; Vlad A; Dincă M
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202402526. PubMed ID: 38415379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Mechanism of High Capacitance in Nickel Hexaaminobenzene-Based Conductive Metal-Organic Frameworks in Aqueous Electrolytes.
    Lukatskaya MR; Feng D; Bak SM; To JWF; Yang XQ; Cui Y; Feldblyum JI; Bao Z
    ACS Nano; 2020 Nov; 14(11):15919-15925. PubMed ID: 33166110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise tuning of interlayer electronic coupling in layered conductive metal-organic frameworks.
    Lu Y; Zhang Y; Yang CY; Revuelta S; Qi H; Huang C; Jin W; Li Z; Vega-Mayoral V; Liu Y; Huang X; Pohl D; Položij M; Zhou S; Cánovas E; Heine T; Fabiano S; Feng X; Dong R
    Nat Commun; 2022 Nov; 13(1):7240. PubMed ID: 36433971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple route to functionalized porous carbon foams from carbon nanodots for metal-free pseudocapacitors.
    Wang C; Sung K; Zhu JZJ; Qu S; Bao J; Chang X; Katsuyama Y; Yang Z; Zhang C; Huang A; Kroes BC; El-Kady MF; Kaner RB
    Mater Horiz; 2024 Feb; 11(3):688-699. PubMed ID: 37990914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors.
    Li XC; Zhang Y; Wang CY; Wan Y; Lai WY; Pang H; Huang W
    Chem Sci; 2017 Apr; 8(4):2959-2965. PubMed ID: 28451362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices.
    Cheng S; Gao W; Cao Z; Yang Y; Xie E; Fu J
    Adv Mater; 2022 Apr; 34(14):e2109870. PubMed ID: 35112396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D Conjugated Metal-Organic Frameworks: Defined Synthesis and Tailor-Made Functions.
    Liu J; Xing G; Chen L
    Acc Chem Res; 2024 Apr; 57(7):1032-1045. PubMed ID: 38428035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks.
    Kim HC; Huh S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32972017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Capacitance Pseudocapacitors from Li
    Banda H; Dou JH; Chen T; Libretto NJ; Chaudhary M; Bernard GM; Miller JT; Michaelis VK; Dincă M
    J Am Chem Soc; 2021 Feb; 143(5):2285-2292. PubMed ID: 33525869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive MOF electrodes for stable supercapacitors with high areal capacitance.
    Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M
    Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks.
    Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC
    J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Negative electrodes for supercapacitors with good performance using conductive bismuth-catecholate metal-organic frameworks.
    Chen S; Zhang H; Li X; Liu Y; Zhang M; Gao X; Chang X; Pu X; He C
    Dalton Trans; 2023 Apr; 52(15):4826-4834. PubMed ID: 36939173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastable Triazine-Based Covalent Organic Framework with an Interlayer Hydrogen Bonding for Supercapacitor Applications.
    Li L; Lu F; Xue R; Ma B; Li Q; Wu N; Liu H; Yao W; Guo H; Yang W
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26355-26363. PubMed ID: 31260241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of conductive metal-organic frameworks and aligned carbon nanofibers for enhancing the performance of flexible supercapacitors.
    Kim D; Yun TG; Lee JH; Yoon KR; Kim K
    Nanoscale Adv; 2024 Mar; 6(7):1900-1908. PubMed ID: 38545288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox Tuning in Crystalline and Electronic Structure of Bimetal-Organic Frameworks Derived Cobalt/Nickel Boride/Sulfide for Boosted Faradaic Capacitance.
    Wang Q; Luo Y; Hou R; Zaman S; Qi K; Liu H; Park HS; Xia BY
    Adv Mater; 2019 Dec; 31(51):e1905744. PubMed ID: 31702854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer engineering of Ti
    Hu M; Cheng R; Li Z; Hu T; Zhang H; Shi C; Yang J; Cui C; Zhang C; Wang H; Fan B; Wang X; Yang QH
    Nanoscale; 2020 Jan; 12(2):763-771. PubMed ID: 31830197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.