These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38415776)

  • 1. Filamentous fungal pellets as a novel and sustainable encapsulation matrix for exogenous bioactive compounds.
    Lu Y; Ogawa M; García JM; Nitin N
    Food Funct; 2024 Mar; 15(6):3087-3097. PubMed ID: 38415776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vacuum facilitated infusion of bioactives into yeast microcarriers: Evaluation of a novel encapsulation approach.
    Young S; Dea S; Nitin N
    Food Res Int; 2017 Oct; 100(Pt 2):100-112. PubMed ID: 28888430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering cell-based microstructures to study the effect of structural complexity on
    Lu Y; Rai R; Nitin N
    Food Funct; 2022 Jun; 13(12):6560-6573. PubMed ID: 35674207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation.
    Wu Y; Wang X; Yin Z; Dong J
    Food Chem; 2023 Mar; 404(Pt B):134308. PubMed ID: 36323008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioaccessibility of curcumin encapsulated in yeast cells and yeast cell wall particles.
    Young S; Rai R; Nitin N
    Food Chem; 2020 Mar; 309():125700. PubMed ID: 31685371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol.
    de Andrade EWV; Hoskin RT; da Silva Pedrini MR
    Lett Appl Microbiol; 2022 Dec; 75(6):1538-1548. PubMed ID: 36036364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encapsulation and release of curcumin using an intact milk fat globule delivery system.
    Alshehab M; Nitin N
    Food Funct; 2019 Nov; 10(11):7121-7130. PubMed ID: 31531433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient encapsulation of curcumin into spent brewer's yeast using a pH-driven method.
    Fu DW; Fu JJ; Li JJ; Tang Y; Shao ZW; Zhou DY; Song L
    Food Chem; 2022 Nov; 394():133537. PubMed ID: 35749870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast cell vacuum infusion into fungal pellets as a novel cell encapsulation methodology.
    Lúquez-Caravaca L; Ogawa M; Rai R; Nitin N; Moreno J; García-Martínez T; Mauricio JC; Jiménez-Uceda JC; Moreno-García J
    Appl Microbiol Biotechnol; 2023 Sep; 107(18):5715-5726. PubMed ID: 37490127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions.
    Lu X; Li C; Huang Q
    Int J Biol Macromol; 2019 Oct; 139():917-924. PubMed ID: 31401275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers.
    Young S; Nitin N
    Food Chem; 2019 Mar; 275():1-7. PubMed ID: 30724175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast cells for encapsulation of bioactive compounds in food products: A review.
    Dadkhodazade E; Khanniri E; Khorshidian N; Hosseini SM; Mortazavian AM; Moghaddas Kia E
    Biotechnol Prog; 2021 Jul; 37(4):e3138. PubMed ID: 33634951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility.
    Li ZL; Peng SF; Chen X; Zhu YQ; Zou LQ; Liu W; Liu CM
    Food Res Int; 2018 Jun; 108():246-253. PubMed ID: 29735054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation.
    Rousta N; Ferreira JA; Taherzadeh MJ
    Bioengineered; 2021 Dec; 12(1):358-368. PubMed ID: 33323030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model.
    Lu X; Zhu J; Pan Y; Huang Q
    Food Funct; 2019 May; 10(5):2583-2594. PubMed ID: 31011719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Edible Filamentous Fungal Carriers as Cell Supports for Growth of Yeast and Cultivated Meat.
    Ogawa M; Moreno García J; Nitin N; Baar K; Block DE
    Foods; 2022 Oct; 11(19):. PubMed ID: 36230217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of curcumin-loaded solid lipid nanoparticles into yogurt: Tribo-rheological properties and dynamic in vitro digestion.
    Gonçalves RFS; Fernandes JM; Martins JT; Vieira JM; Abreu CS; Gomes JR; Vicente AA; Pinheiro AC
    Food Res Int; 2024 Apr; 181():114112. PubMed ID: 38448111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties.
    Touzout Z; Abdellaoui N; Hadj-Hamou AS
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130389. PubMed ID: 38403207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Curcumin and fisetin internalization into Saccharomyces cerevisiae cells via osmoporation: impact of multiple osmotic treatments on the process efficiency.
    Medeiros FGM; Correia RTP; Dupont S; Beney L; Pedrini MRS
    Lett Appl Microbiol; 2018 Oct; 67(4):363-369. PubMed ID: 29978596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted Photodynamic Treatment of Bacterial Biofilms Using Curcumin Encapsulated in Cells and Cell Wall Particles.
    Dou F; Huang K; Nitin N
    ACS Appl Bio Mater; 2021 Jan; 4(1):514-522. PubMed ID: 35014299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.