These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38416067)

  • 1. Simulation of Multiple Source Vocalization in the Larynx: How True Folds, False Folds, and Aryepiglottic Folds May Interact.
    Titze IR
    J Speech Lang Hear Res; 2024 Mar; 67(3):802-810. PubMed ID: 38416067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
    Zheng X; Bielamowicz S; Luo H; Mittal R
    Ann Biomed Eng; 2009 Mar; 37(3):625-42. PubMed ID: 19142730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of source-filter interaction on the voice source in a three-dimensional computational model of voice production.
    Zhang Z
    J Acoust Soc Am; 2023 Oct; 154(4):2462-2475. PubMed ID: 37855666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanisms of harmonic sound generation during phonation: A multi-modal measurement-based approach.
    Lodermeyer A; Bagheri E; Kniesburges S; Näger C; Probst J; Döllinger M; Becker S
    J Acoust Soc Am; 2021 Nov; 150(5):3485. PubMed ID: 34852620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the ventricular folds in a synthetic larynx model.
    Kniesburges S; Birk V; Lodermeyer A; Schützenberger A; Bohr C; Becker S
    J Biomech; 2017 Apr; 55():128-133. PubMed ID: 28285747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the Intraglottal Pressure Induced by Flow Separation Vortices Using Large Eddy Simulation.
    Farbos de Luzan C; Oren L; Gutmark E; Khosla SM
    J Voice; 2021 Nov; 35(6):822-831. PubMed ID: 32273211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
    Kucinschi BR; Scherer RC; Dewitt KJ; Ng TT
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3011-21. PubMed ID: 16708957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of laryngeal resistance and maximum power transfer with semi-occluded airway vocalization.
    Titze IR
    J Acoust Soc Am; 2021 Jun; 149(6):4106. PubMed ID: 34241487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of one-dimensional and three-dimensional glottal flow models in left-right asymmetric vocal fold conditions.
    Yoshinaga T; Zhang Z; Iida A
    J Acoust Soc Am; 2022 Nov; 152(5):2557. PubMed ID: 36456298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.
    de Vries MP; Schutte HK; Veldman AE; Verkerke GJ
    J Acoust Soc Am; 2002 Apr; 111(4):1847-53. PubMed ID: 12002868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of glottal flow.
    Hundertmark-Zaušková A; Lehmann R; Hess M; Müller F
    Comput Biol Med; 2013 Dec; 43(12):2177-85. PubMed ID: 24290934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the tonal sound generation during phonation with and without glottis closure.
    Kniesburges S; Lodermeyer A; Semmler M; Schulz YK; Schützenberger A; Becker S
    J Acoust Soc Am; 2020 May; 147(5):3285. PubMed ID: 32486803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the application of the lattice Boltzmann method to the investigation of glottal flow.
    Kucinschi BR; Afjeh AA; Scherer RC
    J Acoust Soc Am; 2008 Jul; 124(1):523-34. PubMed ID: 18646995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Modeling of Voice Production Using Excised Canine Larynx.
    Jiang W; Farbos de Luzan C; Wang X; Oren L; Khosla SM; Xue Q; Zheng X
    J Biomech Eng; 2022 Feb; 144(2):. PubMed ID: 34423809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.