These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38416145)

  • 1. Deciphering the bridge oxygen vacancy-induced cascading charge effect for electrochemical ammonia synthesis.
    Biswas A; Barman N; Nambron A; Thapa R; Sudarshan K; Dey RS
    Mater Horiz; 2024 May; 11(9):2217-2229. PubMed ID: 38416145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemically synthesized SnO
    He X; Guo H; Liao T; Pu Y; Lai L; Wang Z; Tang H
    Nanoscale; 2021 Oct; 13(38):16307-16315. PubMed ID: 34559870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alteration of Electronic Band Structure
    Biswas A; Nandi S; Kamboj N; Pan J; Bhowmik A; Dey RS
    ACS Nano; 2021 Dec; 15(12):20364-20376. PubMed ID: 34894661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen Vacancies on 2D Layered W
    Jin H; Li L; Liu X; Tang C; Xu W; Chen S; Song L; Zheng Y; Qiao SZ
    Adv Mater; 2019 Aug; 31(32):e1902709. PubMed ID: 31194268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Vacancy Engineering of Fe-Doped NiMoO
    Liu N; Wu R; Liu Y; Liu Y; Deng P; Li Y; Du Y; Cheng Y; Zhuang Z; Kang Z; Li H
    Inorg Chem; 2023 Jul; 62(30):11990-12000. PubMed ID: 37462358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel Nanoflowers with Controllable Cation Vacancy for Enhanced Electrochemical Nitrogen Reduction.
    Bai F; Qu X; Li C; Liu S; Sun J; Chen X; Yang W
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28033-28043. PubMed ID: 35687747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal-Phase and Surface-Structure Engineering of Bi
    Guo P; Yin F; Zhang J; Chen B; Ni Z; Shi L; Han M; Wu Z; Li G
    ACS Appl Mater Interfaces; 2024 Apr; 16(14):17540-17552. PubMed ID: 38551895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacancy Engineering of Iron-Doped W
    Tong Y; Guo H; Liu D; Yan X; Su P; Liang J; Zhou S; Liu J; Lu GQM; Dou SX
    Angew Chem Int Ed Engl; 2020 May; 59(19):7356-7361. PubMed ID: 32084292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy engineering of WO
    Luo L; Wang B; Wang J; Niu X
    Phys Chem Chem Phys; 2021 Aug; 23(31):16658-16663. PubMed ID: 34328159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Nitrogen Reduction to Ammonia by Surface- and Defect-Engineered Co-catalyst-Modified Perovskite Catalysts under Ambient Conditions and Their Charge Carrier Dynamics.
    Bastia S; Moses YT; Kumar N; Mishra RP; Chaudhary YS
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13052-13063. PubMed ID: 36853145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen vacancies engineering in electrocatalysts nitrogen reduction reaction.
    Zhu H; Wang C; He Y; Pu Y; Li P; He L; Huang X; Tang W; Tang H
    Front Chem; 2022; 10():1039738. PubMed ID: 36311423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Oxygen Vacancies via Engineering Heterostructured Fe
    Yang X; Tian Y; Mukherjee S; Li K; Chen X; Lv J; Liang S; Yan LK; Wu G; Zang HY
    Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202304797. PubMed ID: 37376764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption mechanism of the N
    Genç AE; Tranca IC
    Phys Chem Chem Phys; 2023 Jul; 25(27):18465-18480. PubMed ID: 37401802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Vacancy Engineering of MOF-Derived Zn-Doped Co
    Wen L; Li X; Zhang R; Liang H; Zhang Q; Su C; Zeng YJ
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14181-14188. PubMed ID: 33733723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering vacancy and hydrophobicity of two-dimensional TaTe
    Zhao Z; Park J; Choi C; Hong S; Hui X; Zhang H; Benedict Lo TW; Robertson AW; Lv Z; Jung Y; Sun Z
    Innovation (Camb); 2022 Jan; 3(1):100190. PubMed ID: 34984409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transfer and vacancy engineering of Fe
    Jin F; Yin H; Feng R; Niu W; Zhang W; Liu J; Du A; Yang W; Liu Z
    J Colloid Interface Sci; 2023 Oct; 647():354-363. PubMed ID: 37267798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N
    Lai F; Zong W; He G; Xu Y; Huang H; Weng B; Rao D; Martens JA; Hofkens J; Parkin IP; Liu T
    Angew Chem Int Ed Engl; 2020 Aug; 59(32):13320-13327. PubMed ID: 32427402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical N
    Sahoo SK; Heske J; Antonietti M; Qin Q; Oschatz M; Kühne TD
    ACS Appl Energy Mater; 2020 Oct; 3(10):10061-10069. PubMed ID: 33134880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Functionalization-Induced Charging Effect on Boron Active Sites for High-Yield Electrocatalytic NH
    Biswas A; Kapse S; Thapa R; Dey RS
    Nanomicro Lett; 2022 Nov; 14(1):214. PubMed ID: 36334149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cationic vacancy engineering of p-TiO
    Ding W; Li X; Su S; Liu Z; Cao Y; Meng L; Yuan S; Wei W; Luo M
    Nanoscale; 2023 Feb; 15(8):4014-4021. PubMed ID: 36727644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.