These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 38416323)

  • 1. Electrochemical random-access memory: recent advances in materials, devices, and systems towards neuromorphic computing.
    Kwak H; Kim N; Jeon S; Kim S; Woo J
    Nano Converg; 2024 Feb; 11(1):9. PubMed ID: 38416323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Cutting-Edge Frontiers of Electrochemical Random Access Memories (ECRAMs) for Neuromorphic Computing: Revolutionary Advances in Material-to-Device Engineering.
    Nikam RD; Lee J; Lee K; Hwang H
    Small; 2023 Oct; 19(40):e2302593. PubMed ID: 37300356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-Chip Integrated Atomically Thin 2D Material Heater as a Training Accelerator for an Electrochemical Random-Access Memory Synapse for Neuromorphic Computing Application.
    Nikam RD; Lee J; Choi W; Kim D; Hwang H
    ACS Nano; 2022 Aug; 16(8):12214-12225. PubMed ID: 35853220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Li Y; Xiao TP; Bennett CH; Isele E; Melianas A; Tao H; Marinella MJ; Salleo A; Fuller EJ; Talin AA
    Front Neurosci; 2021; 15():636127. PubMed ID: 33897351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Driven Electrochemical Random-Access Memory-Based Synaptic Devices for Neuromorphic Computing Systems: A Mini-Review.
    Kang H; Seo J; Kim H; Kim HW; Hong ER; Kim N; Lee D; Woo J
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ECRAM Materials, Devices, Circuits and Architectures: A Perspective.
    Talin AA; Li Y; Robinson DA; Fuller EJ; Kumar S
    Adv Mater; 2023 Sep; 35(37):e2204771. PubMed ID: 36354177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-resilient solid-state organic artificial synapses for neuromorphic computing.
    Melianas A; Quill TJ; LeCroy G; Tuchman Y; Loo HV; Keene ST; Giovannitti A; Lee HR; Maria IP; McCulloch I; Salleo A
    Sci Adv; 2020 Jul; 6(27):. PubMed ID: 32937458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic Sieving Through One-Atom-Thick 2D Material Enables Analog Nonvolatile Memory for Neuromorphic Computing.
    Nikam RD; Lee J; Choi W; Banerjee W; Kwak M; Yadav M; Hwang H
    Small; 2021 Nov; 17(44):e2103543. PubMed ID: 34596963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristor-Based Artificial Chips.
    Sun B; Chen Y; Zhou G; Cao Z; Yang C; Du J; Chen X; Shao J
    ACS Nano; 2024 Jan; 18(1):14-27. PubMed ID: 38153841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory.
    Ou QF; Xiong BS; Yu L; Wen J; Wang L; Tong Y
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive review of advanced trends: from artificial synapses to neuromorphic systems with consideration of non-ideal effects.
    Kim K; Song MS; Hwang H; Hwang S; Kim H
    Front Neurosci; 2024; 18():1279708. PubMed ID: 38660225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging neuromorphic devices.
    Ielmini D; Ambrogio S
    Nanotechnology; 2020 Feb; 31(9):092001. PubMed ID: 31698347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to Improve the Synaptic Characteristics of Oxygen-Based Electrochemical Random-Access Memory Based on Material Parameters Optimization.
    Lee J; Nikam RD; Kwak M; Hwang H
    ACS Appl Mater Interfaces; 2022 Mar; 14(11):13450-13457. PubMed ID: 35257578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in In-Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials.
    Zhou H; Li S; Ang KW; Zhang YW
    Nanomicro Lett; 2024 Feb; 16(1):121. PubMed ID: 38372805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.