These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38416673)

  • 21. Bright traveling breathers in media with long-range nonconvex dispersion.
    Chandramouli S; Mao Y; Hoefer MA
    Phys Rev E; 2024 Mar; 109(3-1):034212. PubMed ID: 38632737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation.
    Wen XY; Yang Y; Yan Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal system and dynamics of optical soliton solutions for the Schamel KdV equation.
    Hussain A; Chahlaoui Y; Usman M; Zaman FD; Park C
    Sci Rep; 2023 Sep; 13(1):15383. PubMed ID: 37717085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order.
    Petrović NZ; Belić M; Zhong WP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026604. PubMed ID: 21405921
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning the Nonlinear Solitary Wave Solution of the Korteweg-De Vries Equation with Novel Neural Network Algorithm.
    Wen Y; Chaolu T
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Soliton solution, breather solution and rational wave solution for a generalized nonlinear Schrödinger equation with Darboux transformation.
    Fan C; Li L; Yu F
    Sci Rep; 2023 Jun; 13(1):9406. PubMed ID: 37296203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Construction of rational solutions of the real modified Korteweg-de Vries equation from its periodic solutions.
    Xing Q; Wang L; Mihalache D; Porsezian K; He J
    Chaos; 2017 May; 27(5):053102. PubMed ID: 28576109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some new addition formulae for Weierstrass elliptic functions.
    Eilbeck JC; England M; Onishi Y
    Proc Math Phys Eng Sci; 2014 Nov; 470(2171):20140051. PubMed ID: 25383018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lamé polynomials, hyperelliptic reductions and Lamé band structure.
    Maier RS
    Philos Trans A Math Phys Eng Sci; 2008 Mar; 366(1867):1115-53. PubMed ID: 17588866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compacton solutions in a class of generalized fifth-order Korteweg-de Vries equations.
    Cooper F; Hyman JM; Khare A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026608. PubMed ID: 11497731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water wave solutions of the coupled system Zakharov-Kuznetsov and generalized coupled KdV equations.
    Seadawy AR; El-Rashidy K
    ScientificWorldJournal; 2014; 2014():724759. PubMed ID: 25374940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exact and explicit traveling wave solutions to two nonlinear evolution equations which describe incompressible viscoelastic Kelvin-Voigt fluid.
    Roshid MM; Roshid HO
    Heliyon; 2018 Aug; 4(8):e00756. PubMed ID: 30186980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discrete rational and breather solution in the spatial discrete complex modified Korteweg-de Vries equation and continuous counterparts.
    Zhao HQ; Yu GF
    Chaos; 2017 Apr; 27(4):043113. PubMed ID: 28456174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple rogue wave, double-periodic soliton and breather wave solutions for a generalized breaking soliton system in (3 + 1)-dimensions.
    Li W; Kuang Y; Manafian J; Malmir S; Eslami B; Mahmoud KH; Alsubaie ASA
    Sci Rep; 2024 Aug; 14(1):19723. PubMed ID: 39183208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiphase wavetrains, singular wave interactions and the emergence of the Korteweg-de Vries equation.
    Ratliff DJ; Bridges TJ
    Proc Math Phys Eng Sci; 2016 Dec; 472(2196):20160456. PubMed ID: 28119546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Some new traveling wave exact solutions of the (2+1)-dimensional Boiti-Leon-Pempinelli equations.
    Qi JM; Zhang F; Yuan WJ; Huang ZF
    ScientificWorldJournal; 2014; 2014():743254. PubMed ID: 24678276
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation.
    Wang LH; Porsezian K; He JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions.
    Guo B; Ling L; Liu QP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026607. PubMed ID: 22463349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Static algebraic solitons in Korteweg-de Vries type systems and the Hirota transformation.
    Burde GI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026615. PubMed ID: 21929136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of multi-wave solitary solutions of (2+1)-dimensional coupled system of Boiti-Leon-Pempinelli.
    Ghazanfar S; Ahmed N; Iqbal MS; Ali SM; Akgül A; Muhammad S; Ali M; Hassani MK
    Sci Rep; 2024 Aug; 14(1):20234. PubMed ID: 39215034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.