BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38417108)

  • 1. Efficient Sampling of Cavity Hydration in Proteins with Nonequilibrium Grand Canonical Monte Carlo and Polarizable Force Fields.
    Deng J; Cui Q
    J Chem Theory Comput; 2024 Mar; 20(5):1897-1911. PubMed ID: 38417108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
    Bergazin TD; Ben-Shalom IY; Lim NM; Gill SC; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the Predictive Power of Relative Binding Free Energy Calculations for Test Cases Involving Displacement of Binding Site Water Molecules.
    Wahl J; Smieško M
    J Chem Inf Model; 2019 Feb; 59(2):754-765. PubMed ID: 30640456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo.
    Melling OJ; Samways ML; Ge Y; Mobley DL; Essex JW
    J Chem Theory Comput; 2023 Feb; 19(3):1050-1062. PubMed ID: 36692215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Sampling of Water Rehydration on Ligand Binding: A Comparison of Techniques.
    Ge Y; Wych DC; Samways ML; Wall ME; Essex JW; Mobley DL
    J Chem Theory Comput; 2022 Mar; 18(3):1359-1381. PubMed ID: 35148093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo.
    Ross GA; Russell E; Deng Y; Lu C; Harder ED; Abel R; Wang L
    J Chem Theory Comput; 2020 Oct; 16(10):6061-6076. PubMed ID: 32955877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-inhibitor association thermodynamics: explicit and continuum solvent studies.
    Resat H; Marrone TJ; McCammon JA
    Biophys J; 1997 Feb; 72(2 Pt 1):522-32. PubMed ID: 9017183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grand Canonical Monte Carlo coupled multiscale simulation for electrochemical and solvent parameters of silver halide systems in water.
    Sudha V; Harinipriya S; Sangaranarayanan MV
    J Mol Graph Model; 2016 Jul; 68():140-146. PubMed ID: 27442589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydration Properties and Solvent Effects for All-Atom Solutes in Polarizable Coarse-Grained Water.
    Yan XC; Tirado-Rives J; Jorgensen WL
    J Phys Chem B; 2016 Aug; 120(33):8102-14. PubMed ID: 26901452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grand canonical Monte Carlo simulations of water in protein environments.
    Woo HJ; Dinner AR; Roux B
    J Chem Phys; 2004 Oct; 121(13):6392-400. PubMed ID: 15446937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water Sites, Networks, And Free Energies with Grand Canonical Monte Carlo.
    Ross GA; Bodnarchuk MS; Essex JW
    J Am Chem Soc; 2015 Dec; 137(47):14930-43. PubMed ID: 26509924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration.
    Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U
    J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function.
    Subbotina JO; Johannes J; Lev B; Noskov SY
    J Phys Chem B; 2010 May; 114(19):6401-8. PubMed ID: 20411978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of QM/MM Simulations with and without the Drude Oscillator Model Based on Hydration Free Energies of Simple Solutes.
    König G; Pickard FC; Huang J; Thiel W; MacKerell AD; Brooks BR; York DM
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30347691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid estimation of hydration thermodynamics of macromolecular regions.
    Raman EP; MacKerell AD
    J Chem Phys; 2013 Aug; 139(5):055105. PubMed ID: 23927290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations.
    Ben-Shalom IY; Lin Z; Radak BK; Lin C; Sherman W; Gilson MK
    J Chem Theory Comput; 2020 Dec; 16(12):7883-7894. PubMed ID: 33206520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.