BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38417140)

  • 1. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization.
    Suarez AFL; Nguyen TQN; Chang L; Tooh YW; Yong RHS; Leow LC; Koh IYF; Chen H; Koh JWH; Selvanayagam A; Lim V; Tan YE; Agatha I; Winnerdy FR; Morinaka BI
    ACS Chem Biol; 2024 Mar; 19(3):774-783. PubMed ID: 38417140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs.
    Sugiyama R; Suarez AFL; Morishita Y; Nguyen TQN; Tooh YW; Roslan MNHB; Lo Choy J; Su Q; Goh WY; Gunawan GA; Wong FT; Morinaka BI
    J Am Chem Soc; 2022 Jul; 144(26):11580-11593. PubMed ID: 35729768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis.
    Phan CS; Morinaka BI
    ACS Chem Biol; 2022 Dec; 17(12):3284-3289. PubMed ID: 36454686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides.
    Purushothaman M; Chang L; Zhong RJ; Morinaka BI
    ACS Chem Biol; 2024 Jun; 19(6):1229-1236. PubMed ID: 38742762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products.
    Phan CS; Chang L; Nguyen TQN; Suarez AFL; Ho XH; Chen H; Koh IYF; Morinaka BI
    ACS Chem Biol; 2024 Apr; 19(4):855-860. PubMed ID: 38452396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-Translational Formation of Aminomalonate by a Promiscuous Peptide-Modifying Radical SAM Enzyme.
    Ma S; Chen H; Li H; Ji X; Deng Z; Ding W; Zhang Q
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19957-19964. PubMed ID: 34164914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational formation of strained cyclophanes in bacteria.
    Nguyen TQN; Tooh YW; Sugiyama R; Nguyen TPD; Purushothaman M; Leow LC; Hanif K; Yong RHS; Agatha I; Winnerdy FR; Gugger M; Phan AT; Morinaka BI
    Nat Chem; 2020 Nov; 12(11):1042-1053. PubMed ID: 32807886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial cyclophane-containing RiPPs from radical SAM enzymes.
    Phan CS; Morinaka BI
    Nat Prod Rep; 2024 May; 41(5):708-720. PubMed ID: 38047390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanded Sequence Space of Radical S-Adenosylmethionine-Dependent Enzymes Involved in Post-translational Macrocyclization.
    He BB; Cheng Z; Zhong Z; Gao Y; Liu H; Li YX
    Angew Chem Int Ed Engl; 2022 Nov; 61(48):e202212447. PubMed ID: 36199165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An enaminone-directed benzannulation/macrocyclization approach to cyclophane ring systems.
    Pigge FC; Ghasedi F; Rath NP
    J Org Chem; 2002 Jun; 67(13):4547-52. PubMed ID: 12076155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strained cyclophane natural products: macrocyclization at its limits.
    Gulder T; Baran PS
    Nat Prod Rep; 2012 Aug; 29(8):899-934. PubMed ID: 22729238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial Cytochrome P450 Catalyzed Post-translational Macrocyclization of Ribosomal Peptides.
    He BB; Liu J; Cheng Z; Liu R; Zhong Z; Gao Y; Liu H; Song ZM; Tian Y; Li YX
    Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202311533. PubMed ID: 37767859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-capping and helix stability: the Pro C-capping motif.
    Prieto J; Serrano L
    J Mol Biol; 1997 Nov; 274(2):276-88. PubMed ID: 9398533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leader- and Terminal Residue Requirements for Circularin A Biosynthesis Probed by Systematic Mutational Analyses.
    Liu F; van Heel AJ; Kuipers OP
    ACS Synth Biol; 2023 Mar; 12(3):852-862. PubMed ID: 36857413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of leader peptide binding enables leader-free cyanobactin processing.
    Koehnke J; Mann G; Bent AF; Ludewig H; Shirran S; Botting C; Lebl T; Houssen W; Jaspars M; Naismith JH
    Nat Chem Biol; 2015 Aug; 11(8):558-563. PubMed ID: 26098679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of Radical Chemistry with LanD Flavoprotein Activity for C-Terminal Macrocyclization of a Ribosomal Peptide by Formation of an Unsaturated Thioether Residue.
    Cheng B; Huang J; Duan Y; Liu W
    Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202308733. PubMed ID: 37431841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and conformational examination of stereochemical modifications using the template melanotropin peptide, Ac-Nle-c[Asp-His-Phe-Arg-Trp-Ala-Lys]-NH2, on human melanocortin receptors.
    Haskell-Luevano C; Nikiforovich G; Sharma SD; Yang YK; Dickinson C; Hruby VJ; Gantz I
    J Med Chem; 1997 May; 40(11):1738-48. PubMed ID: 9171884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Production of Diverse β-Amino Acid-Containing Proteins.
    Lakis E; Magyari S; Piel J
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202202695. PubMed ID: 35481938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, structural studies and computational evaluation of cyclophanes incorporating imidazole-2-selones.
    Mageed AH; Al-Ameed K
    RSC Adv; 2023 Jun; 13(25):17282-17296. PubMed ID: 37323874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.