These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38417160)

  • 1. Entangled dark state mediated by a dielectric cavity within epsilon-near-zero materials.
    Ma Y; Wang N; Liu Q; Tian Y; Tian Z; Gu Y
    Nanotechnology; 2024 Mar; 35(23):. PubMed ID: 38417160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems.
    Li Y; Nemilentsau A; Argyropoulos C
    Nanoscale; 2019 Aug; 11(31):14635-14647. PubMed ID: 31343051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities.
    Liberal I; Engheta N
    Sci Adv; 2016 Oct; 2(10):e1600987. PubMed ID: 27819047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Cavity-Free, Single-Photon Emission and Bipartite Entanglement of Near-Field-Excited Quantum Emitters.
    Bello F; Kongsuwan N; Donegan JF; Hess O
    Nano Lett; 2020 Aug; 20(8):5830-5836. PubMed ID: 32574498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Entanglement protection of classically driven qubits in a lossy cavity.
    Nourmandipour A; Vafafard A; Mortezapour A; Franzosi R
    Sci Rep; 2021 Aug; 11(1):16259. PubMed ID: 34376732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect.
    Mohamed AA; Rahman AU; Eleuch H
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multistage entanglement swapping using superconducting qubits in the absence and presence of dissipative environment without Bell state measurement.
    Salimian S; Tavassoly MK; Ghasemi M
    Sci Rep; 2023 Sep; 13(1):16342. PubMed ID: 37770646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable couplings between location-insensitive emitters mediated by an epsilon-near-zero plasmonic waveguide.
    Zhu S; Su LL; Ren J
    Opt Express; 2023 Aug; 31(17):28575-28585. PubMed ID: 37710908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.
    Zhang F; Ren J; Duan X; Chen Z; Gong Q; Gu Y
    J Phys Condens Matter; 2018 Aug; 30(30):305302. PubMed ID: 29897349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming noise in quantum teleportation with multipartite hybrid entanglement.
    Liu ZD; Siltanen O; Kuusela T; Miao RH; Ning CX; Li CF; Guo GC; Piilo J
    Sci Adv; 2024 May; 10(18):eadj3435. PubMed ID: 38691593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime.
    Cao C; Wang C; He LY; Zhang R
    Opt Express; 2013 Feb; 21(4):4093-105. PubMed ID: 23481943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement.
    Caligiuri V; Palei M; Imran M; Manna L; Krahne R
    ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heralded entanglement between solid-state qubits separated by three metres.
    Bernien H; Hensen B; Pfaff W; Koolstra G; Blok MS; Robledo L; Taminiau TH; Markham M; Twitchen DJ; Childress L; Hanson R
    Nature; 2013 May; 497(7447):86-90. PubMed ID: 23615617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrabright source of entangled photon pairs.
    Dousse A; Suffczyński J; Beveratos A; Krebs O; Lemaître A; Sagnes I; Bloch J; Voisin P; Senellart P
    Nature; 2010 Jul; 466(7303):217-20. PubMed ID: 20613838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding entanglement sudden death using single-qubit quantum measurement reversal.
    Lim HT; Lee JC; Hong KH; Kim YH
    Opt Express; 2014 Aug; 22(16):19055-68. PubMed ID: 25320992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epsilon-Near-Zero Grids for On-chip Quantum Networks.
    Vertchenko L; Akopian N; Lavrinenko AV
    Sci Rep; 2019 Apr; 9(1):6053. PubMed ID: 30988356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement.
    Lehner BU; Seidelmann T; Undeutsch G; Schimpf C; Manna S; Gawełczyk M; Covre da Silva SF; Yuan X; Stroj S; Reiter DE; Axt VM; Rastelli A
    Nano Lett; 2023 Feb; 23(4):1409-1415. PubMed ID: 36745448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Entanglement of single-atom quantum bits at a distance.
    Moehring DL; Maunz P; Olmschenk S; Younge KC; Matsukevich DN; Duan LM; Monroe C
    Nature; 2007 Sep; 449(7158):68-71. PubMed ID: 17805290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems.
    Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J
    Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.