These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 38417177)
1. SM-GRSNet: sparse mapping-based graph representation segmentation network for honeycomb lung lesion. Zhang Y; Feng X; Dong Y; Chen Y; Zhao Z; Yang B; Chang Y; Bai Y Phys Med Biol; 2024 Apr; 69(8):. PubMed ID: 38417177 [No Abstract] [Full Text] [Related]
2. MCAFNet: multiscale cross-layer attention fusion network for honeycomb lung lesion segmentation. Li G; Xie J; Zhang L; Sun M; Li Z; Sun Y Med Biol Eng Comput; 2024 Apr; 62(4):1121-1137. PubMed ID: 38150110 [TBL] [Abstract][Full Text] [Related]
3. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation. Zi-An Z; Xiu-Fang F; Xiao-Qiang R; Yun-Yun D Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37988756 [No Abstract] [Full Text] [Related]
4. CAM-Wnet: An effective solution for accurate pulmonary embolism segmentation. Liu Z; Yuan H; Wang H Med Phys; 2022 Aug; 49(8):5294-5303. PubMed ID: 35609213 [TBL] [Abstract][Full Text] [Related]
5. A convolutional neural network with pixel-wise sparse graph reasoning for COVID-19 lesion segmentation in CT images. Jia H; Tang H; Ma G; Cai W; Huang H; Zhan L; Xia Y Comput Biol Med; 2023 Mar; 155():106698. PubMed ID: 36842219 [TBL] [Abstract][Full Text] [Related]
6. Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation. Wang Y; Zhang Y; Liu Y; Tian J; Zhong C; Shi Z; Zhang Y; He Z Comput Methods Programs Biomed; 2021 Apr; 202():106004. PubMed ID: 33662804 [TBL] [Abstract][Full Text] [Related]
7. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT. Zhang T; Wang K; Cui H; Jin Q; Cheng P; Nakaguchi T; Li C; Ning Z; Wang L; Xuan P Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36625358 [No Abstract] [Full Text] [Related]
8. A new architecture combining convolutional and transformer-based networks for automatic 3D multi-organ segmentation on CT images. Li C; Bagher-Ebadian H; Sultan R; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Nov; 50(11):6990-7002. PubMed ID: 37738468 [TBL] [Abstract][Full Text] [Related]
9. [Lung parenchyma segmentation based on double scale parallel attention network]. Feng K; Ren L; Wu Y; Li Y; Wang H; Wang G Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Aug; 39(4):721-729. PubMed ID: 36008336 [TBL] [Abstract][Full Text] [Related]
10. HMA-Net: A deep U-shaped network combined with HarDNet and multi-attention mechanism for medical image segmentation. Liu Q; Han Z; Liu Z; Zhang J Med Phys; 2023 Mar; 50(3):1635-1646. PubMed ID: 36303466 [TBL] [Abstract][Full Text] [Related]
11. DUDA-Net: a double U-shaped dilated attention network for automatic infection area segmentation in COVID-19 lung CT images. Xie F; Huang Z; Shi Z; Wang T; Song G; Wang B; Liu Z Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1425-1434. PubMed ID: 34089438 [TBL] [Abstract][Full Text] [Related]
12. Semi-supervised contrast learning-based segmentation of choroidal vessel in optical coherence tomography images. Liu X; Pan J; Zhang Y; Li X; Tang J Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37972415 [No Abstract] [Full Text] [Related]
13. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
14. An effective deep network for automatic segmentation of complex lung tumors in CT images. Wang B; Chen K; Tian X; Yang Y; Zhang X Med Phys; 2021 Sep; 48(9):5004-5016. PubMed ID: 34224147 [TBL] [Abstract][Full Text] [Related]
15. RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning. Wu Z; Li X; Zuo J Front Oncol; 2023; 13():1084096. PubMed ID: 37035155 [TBL] [Abstract][Full Text] [Related]
16. Stroke-GFCN: ischemic stroke lesion prediction with a fully convolutional graph network. Iporre-Rivas A; Saur D; Rohr K; Scheuermann G; Gillmann C J Med Imaging (Bellingham); 2023 Jul; 10(4):044502. PubMed ID: 37465592 [TBL] [Abstract][Full Text] [Related]
17. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001 [TBL] [Abstract][Full Text] [Related]
18. Quantification of liver-Lung shunt fraction on 3D SPECT/CT images for selective internal radiation therapy of liver cancer using CNN-based segmentations and non-rigid registration. Luu MH; Mai HS; Pham XL; Le QA; Le QK; Walsum TV; Le NH; Franklin D; Le VH; Moelker A; Chu DT; Trung NL Comput Methods Programs Biomed; 2023 May; 233():107453. PubMed ID: 36921463 [TBL] [Abstract][Full Text] [Related]
19. ACCPG-Net: A skin lesion segmentation network with Adaptive Channel-Context-Aware Pyramid Attention and Global Feature Fusion. Zhang W; Lu F; Zhao W; Hu Y; Su H; Yuan M Comput Biol Med; 2023 Mar; 154():106580. PubMed ID: 36716686 [TBL] [Abstract][Full Text] [Related]
20. Transformer guided self-adaptive network for multi-scale skin lesion image segmentation. Xin C; Liu Z; Ma Y; Wang D; Zhang J; Li L; Zhou Q; Xu S; Zhang Y Comput Biol Med; 2024 Feb; 169():107846. PubMed ID: 38184865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]