BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38417202)

  • 21. Biological Upcycling of Plastics Waste.
    Klauer RR; Hansen DA; Wu D; Monteiro LMO; Solomon KV; Blenner MA
    Annu Rev Chem Biomol Eng; 2024 Apr; ():. PubMed ID: 38621232
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?
    Wei R; Zimmermann W
    Microb Biotechnol; 2017 Nov; 10(6):1308-1322. PubMed ID: 28371373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laccase mediated delignification of wasted and non-food agricultural biomass: Recent developments and challenges.
    Singh G; Kumar S; Afreen S; Bhalla A; Khurana J; Chandel S; Aggarwal A; Arya SK
    Int J Biol Macromol; 2023 Apr; 235():123840. PubMed ID: 36849073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering Enzymes for Environmental Sustainability.
    Radley E; Davidson J; Foster J; Obexer R; Bell EL; Green AP
    Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202309305. PubMed ID: 37651344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production.
    Shapiro AJ; O'Dea RM; Li SC; Ajah JC; Bass GF; Epps TH
    Annu Rev Chem Biomol Eng; 2023 Jun; 14():109-140. PubMed ID: 37040783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes.
    Gomes M; Rondelez Y; Leibler L
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():457-479. PubMed ID: 35378043
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical upcycling ofpolymers.
    Stadler BM; de Vries JG
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200341. PubMed ID: 34510924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable.
    Al-Naji M; Schlaad H; Antonietti M
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000485. PubMed ID: 33205563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bio-based monomers for amide-containing sustainable polymers.
    Yan K; Wang J; Wang Z; Yuan L
    Chem Commun (Camb); 2023 Jan; 59(4):382-400. PubMed ID: 36524867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities.
    O'Dea RM; Willie JA; Epps TH
    ACS Macro Lett; 2020 Apr; 9(4):476-493. PubMed ID: 35648496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective.
    Upton BM; Kasko AM
    Chem Rev; 2016 Feb; 116(4):2275-306. PubMed ID: 26654678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Enzymes for Environmental Sustainability.
    Radley E; Davidson J; Foster J; Obexer R; Bell EL; Green AP
    Angew Chem Weinheim Bergstr Ger; 2023 Dec; 135(52):e202309305. PubMed ID: 38516574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosourced Vanillin-Based Building Blocks for Organic Electronic Materials.
    Boivin LP; Dupont W; Leclerc M; Gendron D
    J Org Chem; 2021 Dec; 86(23):16548-16557. PubMed ID: 34767376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress in the Chemical Upcycling of Plastic Wastes.
    Chen X; Wang Y; Zhang L
    ChemSusChem; 2021 Oct; 14(19):4137-4151. PubMed ID: 34003585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste.
    Jung H; Shin G; Kwak H; Hao LT; Jegal J; Kim HJ; Jeon H; Park J; Oh DX
    Chemosphere; 2023 Apr; 320():138089. PubMed ID: 36754297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tagging molecules with linear polymers: Biocatalytic transformation of substrates anchored on soluble macromolecules.
    Cornaggia C; Pasini D
    Comb Chem High Throughput Screen; 2010 Jan; 13(1):45-53. PubMed ID: 20214574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts.
    Ribeiro LF; Amarelle V; Alves LF; Viana de Siqueira GM; Lovate GL; Borelli TC; Guazzaroni ME
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biobased Transesterification Vitrimers.
    Kumar A; Connal LA
    Macromol Rapid Commun; 2023 Apr; 44(7):e2200892. PubMed ID: 36661130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Waste to Wealth: Chemical Recycling and Chemical Upcycling of Waste Plastics for a Great Future.
    Chen H; Wan K; Zhang Y; Wang Y
    ChemSusChem; 2021 Oct; 14(19):4123-4136. PubMed ID: 33998153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose-deconstruction potential of nano-biocatalytic systems: A strategic drive from designing to sustainable applications of immobilized cellulases.
    Qamar SA; Qamar M; Bilal M; Bharagava RN; Ferreira LFR; Sher F; Iqbal HMN
    Int J Biol Macromol; 2021 Aug; 185():1-19. PubMed ID: 34146557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.