These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 3841745)

  • 1. Longitudinal patterns in the development of the cerebellum.
    Lakke EA; Marani E; Epema AH
    Acta Morphol Neerl Scand; 1985 Oct; 23(2):127-36. PubMed ID: 3841745
    [No Abstract]   [Full Text] [Related]  

  • 2. The ontogeny of the spinocerebellar projection in the chicken. A study using WGA-HRP as a tracer.
    Lakke EA; Guldemond JM; Voogd J
    Acta Histochem Suppl; 1986; 32():47-51. PubMed ID: 2422693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of longitudinal patterns in the rabbit cerebellum.
    Marani E; Epema A; Brown B; Tetteroo P; Voogd J
    Acta Histochem Suppl; 1986; 32():53-8. PubMed ID: 2422694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study.
    Tan J; Gerrits NM; Nanhoe R; Simpson JI; Voogd J
    J Comp Neurol; 1995 May; 356(1):23-50. PubMed ID: 7543121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The central projection of muscle afferent fibres to the lower medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport method.
    Nyberg G; Blomqvist A
    J Comp Neurol; 1984 Nov; 230(1):99-109. PubMed ID: 6096417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histochemical mapping on the distribution of simple esterase and acetylcholinesterase in the medulla oblongata, cerebellum and spinal cord of mouse.
    Sood PP; Bohra MH
    J Hirnforsch; 1977; 18(1):75-87. PubMed ID: 894017
    [No Abstract]   [Full Text] [Related]  

  • 7. Topographic spinocerebellar mossy fiber projections are maintained in the lurcher mutant.
    Vogel MW; Prittie J
    J Comp Neurol; 1994 May; 343(2):341-51. PubMed ID: 7517964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinogeniculate projection fibers in the monkey optic chiasm: a demonstration of the fiber arrangement by means of wheat germ agglutinin conjugated to horseradish peroxidase.
    Naito J
    J Comp Neurol; 1994 Aug; 346(4):559-71. PubMed ID: 7527062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The change of different forms of AChE during the ontogenetic development of the central nervous system.
    Lehotai L
    Neurobiology (Bp); 1998; 6(4):405-20. PubMed ID: 10220776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques.
    Xu Q; Grant G
    J Comp Neurol; 1994 Jul; 345(2):288-302. PubMed ID: 7523461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat.
    Bankoul S; Goto T; Yates B; Wilson VJ
    J Comp Neurol; 1995 Mar; 353(4):529-38. PubMed ID: 7539013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys.
    Cheema SS; Rustioni A; Whitsel BL
    J Comp Neurol; 1984 May; 225(2):276-90. PubMed ID: 6547152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thalamostriatal projection in the cat.
    Beckstead RM
    J Comp Neurol; 1984 Mar; 223(3):313-46. PubMed ID: 6323551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light microscopic detection of sugar residues in rabbit embryo teeth with lectin-horseradish peroxidase conjugates.
    Lemus D; Romero S; Lemus R; Garcia J; Fuenzalida M
    J Morphol; 1996 Feb; 227(2):185-95. PubMed ID: 8568907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats.
    Molinari HH
    J Comp Neurol; 1984 Feb; 223(1):110-23. PubMed ID: 6200509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vestibular primary afferent projection to the cerebellum of the rabbit.
    Barmack NH; Baughman RW; Errico P; Shojaku H
    J Comp Neurol; 1993 Jan; 327(4):521-34. PubMed ID: 7680050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the spinocerebellar projection in the prenatal mouse.
    Grishkat HL; Eisenman LM
    J Comp Neurol; 1995 Dec; 363(1):93-108. PubMed ID: 8682940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lack of topography in the spinal cord projection to the rabbit soleus muscle.
    Cramer KS; Van Essen DC
    J Comp Neurol; 1995 Jan; 351(3):404-14. PubMed ID: 7535806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the molecular weights of polypeptides in the human CNS that carry the HNK-1 epitope and bind Phaseolus vulgaris lectins.
    Mikol DD; Wrabetz L; Marton LS; Stefansson K
    J Neurochem; 1988 Jun; 50(6):1924-8. PubMed ID: 2453614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.