These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38417605)

  • 1. A framework model to integrate sources and pathways in the assessment of river water pollution.
    Bessa Santos RM; Farias do Valle Junior R; Abreu Pires de Melo Silva MM; Tarlé Pissarra TC; Carvalho de Melo M; Valera CA; Leal Pacheco FA; Sanches Fernandes LF
    Environ Pollut; 2024 Apr; 347():123661. PubMed ID: 38417605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sediment source fingerprints of natural processes and anthropogenic pressures: A contribution to manage the Paraopeba River basin impacted by the B1 tailings dam collapse.
    Acuna-Alonso C; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; de Melo MC; Valera CA; Sanches Fernandes LF; Pacheco FAL; Álvarez X
    J Environ Manage; 2024 Apr; 356():120590. PubMed ID: 38522281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil.
    Calazans GM; Pinto CC; da Costa EP; Perini AF; Oliveira SC
    Environ Monit Assess; 2018 Jul; 190(8):491. PubMed ID: 30056487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Pacheco FAL; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; Carvalho de Melo M; Valera CA; Sanches Fernandes LF
    Sci Total Environ; 2022 Feb; 809():151157. PubMed ID: 34687709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A partial least squares-path model of causality among environmental deterioration indicators in the dry period of Paraopeba River after the rupture of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; Sanches Fernandes LF; Pinheiro Fernandes AC; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Environ Pollut; 2022 Aug; 306():119341. PubMed ID: 35469926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil.
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Fernandes ACP; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2022 Dec; 851(Pt 1):158248. PubMed ID: 36028023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water quality assessment and pollution source apportionment using multivariate statistical techniques: a case study of the Laixi River Basin, China.
    Xiao J; Gao D; Zhang H; Shi H; Chen Q; Li H; Ren X; Chen Q
    Environ Monit Assess; 2023 Jan; 195(2):287. PubMed ID: 36626095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of multivariate statistical methods to analyze the monitoring of surface water quality in the Doce River basin, Minas Gerais, Brazil.
    Fraga MS; Reis GB; da Silva DD; Guedes HAS; Elesbon AAA
    Environ Sci Pollut Res Int; 2020 Oct; 27(28):35303-35318. PubMed ID: 32592050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil.
    Teixeira DBS; Veloso MF; Ferreira FLV; Gleriani JM; do Amaral CH
    Environ Monit Assess; 2021 Jun; 193(7):435. PubMed ID: 34152464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of anthropogenic activities and calculation of the relative risk of violating surface water quality standards established by environmental legislation: a case study from the Piracicaba and Paraopeba river basins, Brazil.
    Soares ALC; Pinto CC; Oliveira SC
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):14085-14099. PubMed ID: 32040737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and socioeconomic assessment of impacts by mining activities-a case study in the Certej River catchment, Western Carpathians, Romania.
    Zobrist J; Sima M; Dogaru D; Senila M; Yang H; Popescu C; Roman C; Bela A; Frei L; Dold B; Balteanu D
    Environ Sci Pollut Res Int; 2009 Aug; 16 Suppl 1():S14-26. PubMed ID: 19159960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scenarios of environmental deterioration in the Paraopeba River, in the three years after the breach of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2023 Sep; 891():164426. PubMed ID: 37236470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Source apportionment of water pollutants in the upstream of Yangtze River using APCS-MLR.
    Cheng G; Wang M; Chen Y; Gao W
    Environ Geochem Health; 2020 Nov; 42(11):3795-3810. PubMed ID: 32594417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined multivariate statistical techniques, Water Pollution Index (WPI) and Daniel Trend Test methods to evaluate temporal and spatial variations and trends of water quality at Shanchong River in the Northwest Basin of Lake Fuxian, China.
    Wang Q; Wu X; Zhao B; Qin J; Peng T
    PLoS One; 2015; 10(3):e0118590. PubMed ID: 25837673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pollution in river tributaries restricts the water quality of ecological water replenishment in the Baiyangdian watershed, China.
    Yao X; Wang Z; Liu W; Zhang Y; Wang T; Li Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):51556-51570. PubMed ID: 36810822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the fluvial system resilience of the river Bacchiglione to point sources of pollution in Northeast Italy: a novel Water Resilience Index (WRI) approach.
    Mirauda D; Caniani D; Colucci MT; Ostoich M
    Environ Sci Pollut Res Int; 2021 Jul; 28(27):36775-36792. PubMed ID: 33712954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical assessment of nonpoint source pollution in agricultural watersheds in the Lower Grand River watershed, MO, USA.
    Jabbar FK; Grote K
    Environ Sci Pollut Res Int; 2019 Jan; 26(2):1487-1506. PubMed ID: 30430446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holistic approach for quantification and identification of pollutant sources of a river basin by analyzing the open drains using an advanced multivariate clustering.
    Srinivas R; Singh AP; Gupta AA; Kumar P
    Environ Monit Assess; 2018 Nov; 190(12):720. PubMed ID: 30426281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia.
    Batsaikhan B; Kwon JS; Kim KH; Lee YJ; Lee JH; Badarch M; Yun ST
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):2019-2034. PubMed ID: 27807785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality assessment and pollution source apportionment using multi-statistic and APCS-MLR modeling techniques in Min River Basin, China.
    Zhang H; Li H; Yu H; Cheng S
    Environ Sci Pollut Res Int; 2020 Nov; 27(33):41987-42000. PubMed ID: 32705557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.