BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3841817)

  • 1. 3-D femoral stress analysis using CT scans and p-version FEM.
    Basu PK; Beall AG; Simmons DJ; Vannier M
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Automatic generation of 3-D finite element codes of the human femur].
    Lengsfeld M; Kaminsky J; Merz B; Franke RP
    Biomed Tech (Berl); 1994 May; 39(5):117-22. PubMed ID: 8049341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis.
    Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF
    Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated finite element analysis of excised human femora based on precision -QCT.
    Merz B; Niederer P; Müller R; Rüegsegger P
    J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
    Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models].
    Schmitt J; Lengsfeld M; Alter P; Leppek R
    Biomed Tech (Berl); 1995 Jun; 40(6):175-81. PubMed ID: 7632871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated three-dimensional finite element modelling of bone: a new method.
    Keyak JH; Meagher JM; Skinner HB; Mote CD
    J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image.
    Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS
    Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element analysis of poor distal contact of the femoral component of a cementless hip endoprosthesis.
    Taylor M; Abel EW
    Proc Inst Mech Eng H; 1993; 207(4):255-61. PubMed ID: 7802877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation.
    Lengsfeld M; Schmitt J; Alter P; Kaminsky J; Leppek R
    Med Eng Phys; 1998 Oct; 20(7):515-22. PubMed ID: 9832027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments.
    Yosibash Z; Padan R; Joskowicz L; Milgrom C
    J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculoskeletal-based finite element analysis of femur after total hip replacement.
    Meena VK; Kumar M; Pundir A; Singh S; Goni V; Kalra P; Sinha RK
    Proc Inst Mech Eng H; 2016 Jun; 230(6):553-60. PubMed ID: 27006421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Establishment of femoral 3D finite element model and validation of injury biomechanics].
    Zou DH; Li ZD; Huang P; Liu NG; Chen YJ
    Fa Yi Xue Za Zhi; 2011 Aug; 27(4):241-5. PubMed ID: 21913549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A new method to reconstruct the spatial structure of human proximal femur and establishment of the finite element model].
    Ma X; Fu X; Ma J; Zhao Y; Wang T; Wang Z; Zhang Y; Dong B; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):71-5. PubMed ID: 21485187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The finite cell method for bone simulations: verification and validation.
    Ruess M; Tal D; Trabelsi N; Yosibash Z; Rank E
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):425-37. PubMed ID: 21695444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical finite element model for bone shape and biomechanical properties.
    Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.