These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3841817)
1. 3-D femoral stress analysis using CT scans and p-version FEM. Basu PK; Beall AG; Simmons DJ; Vannier M Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817 [TBL] [Abstract][Full Text] [Related]
2. [Automatic generation of 3-D finite element codes of the human femur]. Lengsfeld M; Kaminsky J; Merz B; Franke RP Biomed Tech (Berl); 1994 May; 39(5):117-22. PubMed ID: 8049341 [TBL] [Abstract][Full Text] [Related]
3. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study. Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242 [TBL] [Abstract][Full Text] [Related]
4. Anatomical comparison and evaluation of human proximal femurs modeling via different devices and FEM analysis. Verim Ö; Taşgetiren S; Er MS; Timur M; Yuran AF Int J Med Robot; 2013 Jun; 9(2):e19-24. PubMed ID: 22711421 [TBL] [Abstract][Full Text] [Related]
5. Automated finite element analysis of excised human femora based on precision -QCT. Merz B; Niederer P; Müller R; Rüegsegger P J Biomech Eng; 1996 Aug; 118(3):387-90. PubMed ID: 8872261 [TBL] [Abstract][Full Text] [Related]
6. Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties. Taddei F; Martelli S; Reggiani B; Cristofolini L; Viceconti M IEEE Trans Biomed Eng; 2006 Nov; 53(11):2194-200. PubMed ID: 17073324 [TBL] [Abstract][Full Text] [Related]
7. [Use of voxel-oriented femur models for stress analysis. Generation, calculation and validation of CT-based FEM models]. Schmitt J; Lengsfeld M; Alter P; Leppek R Biomed Tech (Berl); 1995 Jun; 40(6):175-81. PubMed ID: 7632871 [TBL] [Abstract][Full Text] [Related]
8. A comparative study on different methods of automatic mesh generation of human femurs. Viceconti M; Bellingeri L; Cristofolini L; Toni A Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280 [TBL] [Abstract][Full Text] [Related]
9. Automated three-dimensional finite element modelling of bone: a new method. Keyak JH; Meagher JM; Skinner HB; Mote CD J Biomed Eng; 1990 Sep; 12(5):389-97. PubMed ID: 2214726 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the 3-D shape and mechanics of the proximal femur using a shape template and a bone mineral density image. Väänänen SP; Isaksson H; Julkunen P; Sirola J; Kröger H; Jurvelin JS Biomech Model Mechanobiol; 2011 Jul; 10(4):529-38. PubMed ID: 20809392 [TBL] [Abstract][Full Text] [Related]
11. Finite element analysis of poor distal contact of the femoral component of a cementless hip endoprosthesis. Taylor M; Abel EW Proc Inst Mech Eng H; 1993; 207(4):255-61. PubMed ID: 7802877 [TBL] [Abstract][Full Text] [Related]
12. Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Lengsfeld M; Schmitt J; Alter P; Kaminsky J; Leppek R Med Eng Phys; 1998 Oct; 20(7):515-22. PubMed ID: 9832027 [TBL] [Abstract][Full Text] [Related]
13. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645 [TBL] [Abstract][Full Text] [Related]
14. A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. Yosibash Z; Padan R; Joskowicz L; Milgrom C J Biomech Eng; 2007 Jun; 129(3):297-309. PubMed ID: 17536896 [TBL] [Abstract][Full Text] [Related]
15. Musculoskeletal-based finite element analysis of femur after total hip replacement. Meena VK; Kumar M; Pundir A; Singh S; Goni V; Kalra P; Sinha RK Proc Inst Mech Eng H; 2016 Jun; 230(6):553-60. PubMed ID: 27006421 [TBL] [Abstract][Full Text] [Related]
16. [Establishment of femoral 3D finite element model and validation of injury biomechanics]. Zou DH; Li ZD; Huang P; Liu NG; Chen YJ Fa Yi Xue Za Zhi; 2011 Aug; 27(4):241-5. PubMed ID: 21913549 [TBL] [Abstract][Full Text] [Related]
17. [A new method to reconstruct the spatial structure of human proximal femur and establishment of the finite element model]. Ma X; Fu X; Ma J; Zhao Y; Wang T; Wang Z; Zhang Y; Dong B; Yang Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):71-5. PubMed ID: 21485187 [TBL] [Abstract][Full Text] [Related]
18. The finite cell method for bone simulations: verification and validation. Ruess M; Tal D; Trabelsi N; Yosibash Z; Rank E Biomech Model Mechanobiol; 2012 Mar; 11(3-4):425-37. PubMed ID: 21695444 [TBL] [Abstract][Full Text] [Related]
19. Statistical finite element model for bone shape and biomechanical properties. Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916 [TBL] [Abstract][Full Text] [Related]
20. Finite element analysis of a femur to deconstruct the paradox of bone curvature. Jade S; Tamvada KH; Strait DS; Grosse IR J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]