These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3841817)

  • 21. Sensitivity of femoral strain pattern analyses to resultant and muscle forces at the hip joint.
    Lengsfeld M; Kaminsky J; Merz B; Franke RP
    Med Eng Phys; 1996 Jan; 18(1):70-8. PubMed ID: 8771042
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trabecular structure compared to stress trajectories in the proximal femur and the calcaneus.
    Vander Sloten J; Van der Perre G
    J Biomed Eng; 1989 May; 11(3):203-8. PubMed ID: 2724941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison between automatically generated linear and parabolic tetrahedra when used to mesh a human femur.
    Polgar K; Viceconti M; O'Connor JJ
    Proc Inst Mech Eng H; 2001; 215(1):85-94. PubMed ID: 11323989
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of the mechanical response of the femur with uncertain elastic properties.
    Wille H; Rank E; Yosibash Z
    J Biomech; 2012 Apr; 45(7):1140-8. PubMed ID: 22417868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Femur finite element model instantiation from partial anatomies using statistical shape and appearance models.
    Nolte D; Bull AMJ
    Med Eng Phys; 2019 May; 67():55-65. PubMed ID: 30902520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive value of proximal femoral bone densitometry in determining local orthogonal material properties.
    Cody DD; McCubbrey DA; Divine GW; Gross GJ; Goldstein SA
    J Biomech; 1996 Jun; 29(6):753-61. PubMed ID: 9147972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
    Zhang Y; Zhong W; Zhu H; Chen Y; Xu L; Zhu J
    Int J Surg; 2013; 11(9):930-4. PubMed ID: 23832095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patient-specific finite-element analyses of the proximal femur with orthotropic material properties validated by experiments.
    Trabelsi N; Yosibash Z
    J Biomech Eng; 2011 Jun; 133(6):061001. PubMed ID: 21744921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Finite element modelling of the vibrational behaviour of the human femur using CT-based individualized geometrical and material properties.
    Couteau B; Hobatho MC; Darmana R; Brignola JC; Arlaud JY
    J Biomech; 1998 Apr; 31(4):383-6. PubMed ID: 9672093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of strength and strain of the proximal femur by a CT-based finite element method.
    Bessho M; Ohnishi I; Matsuyama J; Matsumoto T; Imai K; Nakamura K
    J Biomech; 2007; 40(8):1745-53. PubMed ID: 17034798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Numerical treatment of bone as anisotropic material].
    Besdo D; Händel M
    Biomed Tech (Berl); 1994 Nov; 39(11):293-8. PubMed ID: 7833449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concept and development of an orthotropic FE model of the proximal femur.
    Wirtz DC; Pandorf T; Portheine F; Radermacher K; Schiffers N; Prescher A; Weichert D; Niethard FU
    J Biomech; 2003 Feb; 36(2):289-93. PubMed ID: 12547369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).
    Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V
    Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical modelling of the whole human femur incorporating geometric and material properties.
    Bryan R; Mohan PS; Hopkins A; Galloway F; Taylor M; Nair PB
    Med Eng Phys; 2010 Jan; 32(1):57-65. PubMed ID: 19932044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A femoral model with all relevant muscles and hip capsule ligaments.
    Helwig P; Hindenlang U; Hirschmüller A; Konstantinidis L; Südkamp N; Schneider R
    Comput Methods Biomech Biomed Engin; 2013; 16(6):669-77. PubMed ID: 22149414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developing CT based computational models of pediatric femurs.
    Li X; Viceconti M; Cohen MC; Reilly GC; Carré MJ; Offiah AC
    J Biomech; 2015 Jul; 48(10):2034-40. PubMed ID: 25895643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Repeatability of digital image correlation for measurement of surface strains in composite long bones.
    Väänänen SP; Amin Yavari S; Weinans H; Zadpoor AA; Jurvelin JS; Isaksson H
    J Biomech; 2013 Jul; 46(11):1928-32. PubMed ID: 23791085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.