These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38418535)

  • 1. Genetically encoded bioorthogonal tryptophan decaging in living cells.
    Zhu Y; Ding W; Chen Y; Shan Y; Liu C; Fan X; Lin S; Chen PR
    Nat Chem; 2024 Apr; 16(4):533-542. PubMed ID: 38418535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAGE-prox: A Unified Approach for Time-Resolved Protein Activation in Living Systems.
    Wang J; Liu Y; Liu Y; Wang C; Chen PR
    Curr Protoc; 2021 Jun; 1(6):e180. PubMed ID: 34165886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells.
    Li J; Jia S; Chen PR
    Nat Chem Biol; 2014 Dec; 10(12):1003-5. PubMed ID: 25362360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically Encoded Chemical Decaging in Living Bacteria.
    Liu L; Liu Y; Zhang G; Ge Y; Fan X; Lin F; Wang J; Zheng H; Xie X; Zeng X; Chen PR
    Biochemistry; 2018 Jan; 57(4):446-450. PubMed ID: 29171270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved protein activation by proximal decaging in living systems.
    Wang J; Liu Y; Liu Y; Zheng S; Wang X; Zhao J; Yang F; Zhang G; Wang C; Chen PR
    Nature; 2019 May; 569(7757):509-513. PubMed ID: 31068699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrazine-Triggered Release of Carboxylic-Acid-Containing Molecules for Activation of an Anti-inflammatory Drug.
    Davies S; Qiao L; Oliveira BL; Navo CD; Jiménez-Osés G; Bernardes GJL
    Chembiochem; 2019 Jun; 20(12):1541-1546. PubMed ID: 30773780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Tetrazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells.
    Fan X; Ge Y; Lin F; Yang Y; Zhang G; Ngai WS; Lin Z; Zheng S; Wang J; Zhao J; Li J; Chen PR
    Angew Chem Int Ed Engl; 2016 Nov; 55(45):14046-14050. PubMed ID: 27735133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introducing bioorthogonal functionalities into proteins in living cells.
    Hao Z; Hong S; Chen X; Chen PR
    Acc Chem Res; 2011 Sep; 44(9):742-51. PubMed ID: 21634380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Late-Stage Functionalization of Tryptophan-Containing Peptides To Facilitate Bioorthogonal Tetrazine Ligation.
    Mupparapu N; Syed B; Nguyen DN; Vo TH; Trujillo A; Elshahawi SI
    Org Lett; 2024 Mar; 26(12):2489-2494. PubMed ID: 38498918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence of tryptophan in designed hairpin and Trp-cage miniproteins: measurements of fluorescence yields and calculations by quantum mechanical molecular dynamics simulations.
    McMillan AW; Kier BL; Shu I; Byrne A; Andersen NH; Parson WW
    J Phys Chem B; 2013 Feb; 117(6):1790-809. PubMed ID: 23330783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioorthogonal Engineering of Bacterial Effectors for Spatial-Temporal Modulation of Cell Signaling.
    Zhao J; Liu Y; Lin F; Wang W; Yang S; Ge Y; Chen PR
    ACS Cent Sci; 2019 Jan; 5(1):145-152. PubMed ID: 30693333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioorthogonal Chemical Activation of Kinases in Living Systems.
    Zhang G; Li J; Xie R; Fan X; Liu Y; Zheng S; Ge Y; Chen PR
    ACS Cent Sci; 2016 May; 2(5):325-31. PubMed ID: 27280167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrazine Carbon Nanotubes for Pretargeted In Vivo "Click-to-Release" Bioorthogonal Tumour Imaging.
    Li H; Conde J; Guerreiro A; Bernardes GJL
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16023-16032. PubMed ID: 32558207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating Cation-π Interactions with Genetically Encoded Tryptophan Derivatives.
    Zhao H; Liu C; Ding W; Tang L; Fang Y; Chen Y; Hu L; Yuan Y; Fang D; Lin S
    J Am Chem Soc; 2022 Apr; 144(15):6742-6748. PubMed ID: 35380832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioorthogonal Decaging Reactions for Targeted Drug Activation.
    Davies S; Stenton BJ; Bernardes GJL
    Chimia (Aarau); 2018 Nov; 72(11):771-776. PubMed ID: 30514419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.
    Baalmann M; Best M; Wombacher R
    Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetically encoded multifunctional unnatural amino acid for versatile protein manipulations in living cells.
    Ge Y; Fan X; Chen PR
    Chem Sci; 2016 Dec; 7(12):7055-7060. PubMed ID: 28451140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proximity-Induced Bioorthogonal Chemistry Using Inverse Electron Demand Diels-Alder Reaction.
    Möhler JS; Werther P; Wombacher R
    Methods Mol Biol; 2019; 2008():147-163. PubMed ID: 31124095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biometal binding-site mimicry with modular, hetero-bifunctionally modified architecture encompassing a Trp/His motif: insights into spatiotemporal noncovalent interactions from a comparative spectroscopic study.
    Yang CM
    Dalton Trans; 2011 Mar; 40(12):3008-27. PubMed ID: 21331408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.