These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 38418635)
1. A smartphone-based colorimetric assay using Cu-tannic acid nanosheets (Cu-TA NShs) as a laccase-mimicking nanozyme for visual detection of quercetin in vegetables. Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K; Madani-Nejad E Mikrochim Acta; 2024 Feb; 191(3):168. PubMed ID: 38418635 [TBL] [Abstract][Full Text] [Related]
2. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. Davoodi-Rad K; Shokrollahi A; Shahdost-Fard F; Azadkish K Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979586 [TBL] [Abstract][Full Text] [Related]
3. 2-Methylbenzimidazole-copper nanozyme with high laccase activity for colorimetric differentiation and detection of aminophenol isomers. Wang Y; Li M; Qu L; Yu L; Li Z Talanta; 2024 Nov; 279():126630. PubMed ID: 39098242 [TBL] [Abstract][Full Text] [Related]
4. Bioinspired laccase-mimicking catalyst for on-site monitoring of thiram in paper-based colorimetric platform. Li A; Li H; Ma Y; Wang T; Liu X; Wang C; Liu F; Sun P; Yan X; Lu G Biosens Bioelectron; 2022 Jul; 207():114199. PubMed ID: 35325721 [TBL] [Abstract][Full Text] [Related]
5. Smartphone-assisted nanozyme sensor array constructed based on reaction kinetics for the discrimination and identification of phenolic compounds. Jing W; Shi Q; Zheng M; Yang Y; Qiang S; Jia Z; Zhu T; Zhao Y; Qu Y; Lu F; Liu F; Dai Y Anal Chim Acta; 2024 Jan; 1287():342133. PubMed ID: 38182397 [TBL] [Abstract][Full Text] [Related]
6. Rapid colorimetric sensor for ultrasensitive and highly selective detection of Fumonisin B1 in cereal based on laccase-mimicking activity of silver phosphate nanoparticles. Niu X; He H; Ran H; Wu Z; Tang Y; Wu Y Food Chem; 2023 Dec; 429():136903. PubMed ID: 37487390 [TBL] [Abstract][Full Text] [Related]
7. CoMnO Song C; Wang F; Zhang X; Ma Y; Wu Y; He M; Niu X; Sun M Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667171 [TBL] [Abstract][Full Text] [Related]
8. A colorimetric detection of dopamine in urine and serum based on the CeO Yin Q; Wang Y; Yang D; Yang Y; Zhu Y Luminescence; 2024 Feb; 39(2):e4684. PubMed ID: 38332470 [TBL] [Abstract][Full Text] [Related]
9. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions. Chaiyo S; Siangproh W; Apilux A; Chailapakul O Anal Chim Acta; 2015 Mar; 866():75-83. PubMed ID: 25732695 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional MnCo@C yolk-shell nanozymes with smartphone platform for rapid colorimetric analysis of total antioxidant capacity and phenolic compounds. Zhu X; Tang J; Ouyang X; Liao Y; Feng H; Yu J; Chen L; Lu Y; Yi Y; Tang L Biosens Bioelectron; 2022 Nov; 216():114652. PubMed ID: 36095977 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric assay of phosphate using a multicopper laccase-like nanozyme. Huang S; Tang X; Yu L; Hong S; Liu J; Xu B; Liu R; Guo Y; Xu L Mikrochim Acta; 2022 Sep; 189(10):378. PubMed ID: 36076043 [TBL] [Abstract][Full Text] [Related]
12. A Smartphone Colorimetric Sensor Based on Pt@Au Nanozyme for Visual and Quantitative Detection of Omethoate. Zhang B; Zhou R; Zhang H; Cai D; Lin X; Lang Y; Qiu Y; Shentu X; Ye Z; Yu X Foods; 2022 Sep; 11(18):. PubMed ID: 36141028 [TBL] [Abstract][Full Text] [Related]
13. Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Shen Y; Wei Y; Liu Z; Nie C; Ye Y Mikrochim Acta; 2022 May; 189(6):233. PubMed ID: 35622176 [TBL] [Abstract][Full Text] [Related]
14. Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. Wang J; Huang R; Qi W; Su R; He Z J Hazard Mater; 2022 May; 429():128404. PubMed ID: 35236027 [TBL] [Abstract][Full Text] [Related]
15. A novel selective detection method for sulfide in food systems based on the GMP-Cu nanozyme with laccase activity. Huang H; Li M; Hao M; Yu LL; Li Y Talanta; 2021 Dec; 235():122775. PubMed ID: 34517635 [TBL] [Abstract][Full Text] [Related]
16. A smartphone-assisted portable biosensor using laccase-mineral hybrid microflowers for colorimetric determination of epinephrine. Zhang M; Zhang Y; Yang C; Ma C; Tang J Talanta; 2021 Mar; 224():121840. PubMed ID: 33379058 [TBL] [Abstract][Full Text] [Related]
17. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Chai TQ; Chen GY; Chen LX; Wang JL; Zhang CY; Yang FQ Anal Chim Acta; 2023 Oct; 1279():341771. PubMed ID: 37827670 [TBL] [Abstract][Full Text] [Related]
18. Tris-Copper Nanozyme as a Novel Laccase Mimic for the Detection and Degradation of Phenolic Compounds. Chai TQ; Wang JL; Chen GY; Chen LX; Yang FQ Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836965 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of superior laccase-mimicking enzyme with catalytic oxidative and photothermal properties for anti-bacterial and dual-mode glutathione S-transferase monitoring. Li M; Xie Y; Li R; Li N; Su X Biosens Bioelectron; 2024 Oct; 261():116501. PubMed ID: 38905858 [TBL] [Abstract][Full Text] [Related]
20. High-loading Cu single-atom nanozymes supported by carbon nitride with peroxidase-like activity for the colorimetric detection of tannic acid. Xie X; Chen X; Wang Y; Zhang M; Fan Y; Yang X Talanta; 2023 May; 257():124387. PubMed ID: 36841014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]