These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38418720)

  • 1. Screening of growth inhibitors for epithelial-mesenchymal transition-induced cells by TGF-β from plant-based sources identified the active compound hydroxychavicol from Piper bitle.
    Matsuo H; Kawakami H; Anjiki N; Kawano N; Fuchino H; Kawahara N; Yoshimatsu K
    J Nat Med; 2024 Jun; 78(3):774-783. PubMed ID: 38418720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanaomycin K, a new epithelial-mesenchymal transition inhibitor produced by the actinomycete "Streptomyces rosa subsp. notoensis" OS-3966.
    Matsuo H; Nakanishi J; Noguchi Y; Kitagawa K; Shigemura K; Sunazuka T; Takahashi Y; Ōmura S; Nakashima T
    J Biosci Bioeng; 2020 Mar; 129(3):291-295. PubMed ID: 31582334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxychavicol: a potent xanthine oxidase inhibitor obtained from the leaves of betel, Piper betle.
    Murata K; Nakao K; Hirata N; Namba K; Nomi T; Kitamura Y; Moriyama K; Shintani T; Iinuma M; Matsuda H
    J Nat Med; 2009 Jul; 63(3):355-9. PubMed ID: 19387769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxychavicol from Piper betle induces apoptosis, cell cycle arrest, and inhibits epithelial-mesenchymal transition in pancreatic cancer cells.
    Guha Majumdar A; Subramanian M
    Biochem Pharmacol; 2019 Aug; 166():274-291. PubMed ID: 31154000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanaomycin K inhibited epithelial mesenchymal transition and tumor growth in bladder cancer cells in vitro and in vivo.
    Kitagawa K; Shigemura K; Ishii A; Nakashima T; Matsuo H; Takahashi Y; Omura S; Nakanishi J; Fujisawa M
    Sci Rep; 2021 Apr; 11(1):9217. PubMed ID: 33911182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new hydroxychavicol dimer from the roots of Piper betle.
    Lin CF; Hwang TL; Chien CC; Tu HY; Lay HL
    Molecules; 2013 Feb; 18(3):2563-70. PubMed ID: 23442932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel Leaves, Piper betle Methanolic Extract.
    Syahidah A; Saad CR; Hassan MD; Rukayadi Y; Norazian MH; Kamarudin MS
    Pak J Biol Sci; 2017; 20(2):70-81. PubMed ID: 29022997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.
    Ali I; Khan FG; Suri KA; Gupta BD; Satti NK; Dutt P; Afrin F; Qazi GN; Khan IA
    Ann Clin Microbiol Antimicrob; 2010 Feb; 9():7. PubMed ID: 20128889
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Sekar V; Ramasamy G; Ravikumar C
    Drug Dev Ind Pharm; 2022 May; 48(5):169-188. PubMed ID: 35311433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxychavicol, a polyphenol from
    Rajedadram A; Pin KY; Ling SK; Yan SW; Looi ML
    J Zhejiang Univ Sci B; 2021 Feb; 22(2):112-122. PubMed ID: 33615752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stem cells induce epithelial mesenchymal transition in melanoma by paracrine secretion of transforming growth factor-β.
    Lv C; Dai H; Sun M; Zhao H; Wu K; Zhu J; Wang Y; Cao X; Xia Z; Xue C
    Melanoma Res; 2017 Apr; 27(2):74-84. PubMed ID: 28079609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer Potential of Hydroxychavicol Derived from
    Vinusri S; Gnanam R; Caroline R; Santhanakrishnan VP; Kandavelmani A
    Nutr Cancer; 2022; 74(10):3701-3713. PubMed ID: 35703834
    [No Abstract]   [Full Text] [Related]  

  • 13. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.
    Chakraborty JB; Mahato SK; Joshi K; Shinde V; Rakshit S; Biswas N; Choudhury Mukherjee I; Mandal L; Ganguly D; Chowdhury AA; Chaudhuri J; Paul K; Pal BC; Vinayagam J; Pal C; Manna A; Jaisankar P; Chaudhuri U; Konar A; Roy S; Bandyopadhyay S
    Cancer Sci; 2012 Jan; 103(1):88-99. PubMed ID: 21943109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Application of Photoactivatable Substrate for the Evaluation of Epithelial-mesenchymal Transition Inhibitors.
    Nakanishi J; Sugiyama K; Matsuo H; Takahashi Y; Omura S; Nakashima T
    Anal Sci; 2019 Jan; 35(1):65-69. PubMed ID: 30393243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure Identification of ViceninII Extracted from
    Luo Y; Ren Z; Du B; Xing S; Huang S; Li Y; Lei Z; Li D; Chen H; Huang Y; Wei G
    Molecules; 2019 Jan; 24(1):. PubMed ID: 30609689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of MMP-9 of oral epithelial cells by areca nut extract is related to TGF-β/Smad2-dependent and -independent pathways and prevented by betel leaf extract, hydroxychavicol and melatonin.
    Chang MC; Pan YH; Wu HL; Lu YJ; Liao WC; Yeh CY; Lee JJ; Jeng JH
    Aging (Albany NY); 2019 Dec; 11(23):11624-11639. PubMed ID: 31831717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studying TGF-β Signaling and TGF-β-induced Epithelial-to-mesenchymal Transition in Breast Cancer and Normal Cells.
    Zhang J; Thorikay M; van der Zon G; van Dinther M; Ten Dijke P
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha1-Antitrypsin Attenuates Renal Fibrosis by Inhibiting TGF-β1-Induced Epithelial Mesenchymal Transition.
    Cho JH; Ryu HM; Oh EJ; Yook JM; Ahn JS; Jung HY; Choi JY; Park SH; Kim YL; Kwak IS; Kim CD
    PLoS One; 2016; 11(9):e0162186. PubMed ID: 27607429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microparticles derived from human erythropoietin mRNA-transfected mesenchymal stem cells inhibit epithelial-to-mesenchymal transition and ameliorate renal interstitial fibrosis.
    Lee M; Kim SH; Jhee JH; Kim TY; Choi HY; Kim HJ; Park HC
    Stem Cell Res Ther; 2020 Sep; 11(1):422. PubMed ID: 32993806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516.
    Arai K; Eguchi T; Rahman MM; Sakamoto R; Masuda N; Nakatsura T; Calderwood SK; Kozaki K; Itoh M
    PLoS One; 2016; 11(9):e0162394. PubMed ID: 27622654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.