These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38418871)

  • 61. Applying Automated MR-Based Diagnostic Methods to the Memory Clinic: A Prospective Study.
    Klöppel S; Peter J; Ludl A; Pilatus A; Maier S; Mader I; Heimbach B; Frings L; Egger K; Dukart J; Schroeter ML; Perneczky R; Häussermann P; Vach W; Urbach H; Teipel S; Hüll M; Abdulkadir A;
    J Alzheimers Dis; 2015; 47(4):939-54. PubMed ID: 26401773
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study.
    Millar PR; Gordon BA; Luckett PH; Benzinger TLS; Cruchaga C; Fagan AM; Hassenstab JJ; Perrin RJ; Schindler SE; Allegri RF; Day GS; Farlow MR; Mori H; Nübling G; ; Bateman RJ; Morris JC; Ances BM
    Elife; 2023 Jan; 12():. PubMed ID: 36607335
    [TBL] [Abstract][Full Text] [Related]  

  • 63. What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty?
    Kumar V; Roche C; Overman S; Simovitch R; Flurin PH; Wright T; Zuckerman J; Routman H; Teredesai A
    Clin Orthop Relat Res; 2020 Oct; 478(10):2351-2363. PubMed ID: 32332242
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Machine learning analyses identify multi-modal frailty factors that selectively discriminate four cohorts in the Alzheimer's disease spectrum: a COMPASS-ND study.
    Bohn L; Drouin SM; McFall GP; Rolfson DB; Andrew MK; Dixon RA
    BMC Geriatr; 2023 Dec; 23(1):837. PubMed ID: 38082372
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Predicting Progression from Normal to MCI and from MCI to AD Using Clinical Variables in the National Alzheimer's Coordinating Center Uniform Data Set Version 3: Application of Machine Learning Models and a Probability Calculator.
    Pang Y; Kukull W; Sano M; Albin RL; Shen C; Zhou J; Dodge HH
    J Prev Alzheimers Dis; 2023; 10(2):301-313. PubMed ID: 36946457
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Primary care electronic medical records can be used to predict risk and identify potentially modifiable factors for early and late death in adult onset epilepsy.
    Hrabok M; Engbers JDT; Wiebe S; Sajobi TT; Subota A; Almohawes A; Federico P; Hanson A; Klein KM; Peedicail J; Pillay N; Singh S; Josephson CB
    Epilepsia; 2021 Jan; 62(1):51-60. PubMed ID: 33316095
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Clinical features of COVID-19 mortality: development and validation of a clinical prediction model.
    Yadaw AS; Li YC; Bose S; Iyengar R; Bunyavanich S; Pandey G
    Lancet Digit Health; 2020 Oct; 2(10):e516-e525. PubMed ID: 32984797
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An Interpretable Longitudinal Preeclampsia Risk Prediction Using Machine Learning.
    Eberhard BW; Cohen RY; Rigoni J; Bates DW; Gray KJ; Kovacheva VP
    medRxiv; 2023 Aug; ():. PubMed ID: 37645797
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost.
    Hou N; Li M; He L; Xie B; Wang L; Zhang R; Yu Y; Sun X; Pan Z; Wang K
    J Transl Med; 2020 Dec; 18(1):462. PubMed ID: 33287854
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Predicting the onset of Alzheimer's disease and related dementia using electronic health records: findings from the cache county study on memory in aging (1995-2008).
    Schliep KC; Thornhill J; Tschanz JT; Facelli JC; Østbye T; Sorweid MK; Smith KR; Varner M; Boyce RD; Cliatt Brown CJ; Meeks H; Abdelrahman S
    BMC Med Inform Decis Mak; 2024 Oct; 24(1):316. PubMed ID: 39468568
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Can Machine Learning Algorithms Predict Which Patients Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty?
    Fontana MA; Lyman S; Sarker GK; Padgett DE; MacLean CH
    Clin Orthop Relat Res; 2019 Jun; 477(6):1267-1279. PubMed ID: 31094833
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Framingham risk score conventional risk factors are potent to predict all-cause mortality using machine learning algorithms: a population-based prospective cohort study over 40 years in China.
    Huang Q; Zeng T; Zhang J; Min J; Zheng J; Tian S; Huang H; Liu X; Zhang H; Wang P; Hu X; Chen L
    J Investig Med; 2023 Aug; 71(6):586-590. PubMed ID: 37144834
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients With COVID-19 in New York City: Model Development and Validation.
    Vaid A; Somani S; Russak AJ; De Freitas JK; Chaudhry FF; Paranjpe I; Johnson KW; Lee SJ; Miotto R; Richter F; Zhao S; Beckmann ND; Naik N; Kia A; Timsina P; Lala A; Paranjpe M; Golden E; Danieletto M; Singh M; Meyer D; O'Reilly PF; Huckins L; Kovatch P; Finkelstein J; Freeman RM; Argulian E; Kasarskis A; Percha B; Aberg JA; Bagiella E; Horowitz CR; Murphy B; Nestler EJ; Schadt EE; Cho JH; Cordon-Cardo C; Fuster V; Charney DS; Reich DL; Bottinger EP; Levin MA; Narula J; Fayad ZA; Just AC; Charney AW; Nadkarni GN; Glicksberg BS
    J Med Internet Res; 2020 Nov; 22(11):e24018. PubMed ID: 33027032
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Predicting progression of mild cognitive impairment to dementia using neuropsychological data: a supervised learning approach using time windows.
    Pereira T; Lemos L; Cardoso S; Silva D; Rodrigues A; Santana I; de Mendonça A; Guerreiro M; Madeira SC
    BMC Med Inform Decis Mak; 2017 Jul; 17(1):110. PubMed ID: 28724366
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.
    Alaa AM; Bolton T; Di Angelantonio E; Rudd JHF; van der Schaar M
    PLoS One; 2019; 14(5):e0213653. PubMed ID: 31091238
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Prediction of conversion to dementia using interpretable machine learning in patients with amnestic mild cognitive impairment.
    Chun MY; Park CJ; Kim J; Jeong JH; Jang H; Kim K; Seo SW
    Front Aging Neurosci; 2022; 14():898940. PubMed ID: 35992586
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Stable and Scalable Digital Composite Neurocognitive Test for Early Dementia Screening Based on Machine Learning: Model Development and Validation Study.
    Gu D; Lv X; Shi C; Zhang T; Liu S; Fan Z; Tu L; Zhang M; Zhang N; Chen L; Wang Z; Wang J; Zhang Y; Li H; Wang L; Zhu J; Zheng Y; Wang H; Yu X;
    J Med Internet Res; 2023 Dec; 25():e49147. PubMed ID: 38039074
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dementia risks identified by vocal features via telephone conversations: A novel machine learning prediction model.
    Shimoda A; Li Y; Hayashi H; Kondo N
    PLoS One; 2021; 16(7):e0253988. PubMed ID: 34260593
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evaluating the Potential of Machine Learning and Wearable Devices in End-of-Life Care in Predicting 7-Day Death Events Among Patients With Terminal Cancer: Cohort Study.
    Liu JH; Shih CY; Huang HL; Peng JK; Cheng SY; Tsai JS; Lai F
    J Med Internet Res; 2023 Aug; 25():e47366. PubMed ID: 37594793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.