These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 38418871)
81. Predictive models for diabetes mellitus using machine learning techniques. Lai H; Huang H; Keshavjee K; Guergachi A; Gao X BMC Endocr Disord; 2019 Oct; 19(1):101. PubMed ID: 31615566 [TBL] [Abstract][Full Text] [Related]
82. A machine learning approach in a monocentric cohort for predicting primary refractory disease in Diffuse Large B-cell lymphoma patients. Detrait MY; Warnon S; Lagasse R; Dumont L; De Prophétis S; Hansenne A; Raedemaeker J; Robin V; Verstraete G; Gillain A; Depasse N; Jacmin P; Pranger D PLoS One; 2024; 19(10):e0311261. PubMed ID: 39352921 [TBL] [Abstract][Full Text] [Related]
83. Predicting post-stroke pneumonia using deep neural network approaches. Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312 [TBL] [Abstract][Full Text] [Related]
84. Predicting 30-day mortality in severely injured elderly patients with trauma in Korea using machine learning algorithms: a retrospective study. Han J; Yoon SY; Seok J; Lee JY; Lee JS; Ye JB; Sul Y; Kim SH; Kim HR J Trauma Inj; 2024 Sep; 37(3):201-208. PubMed ID: 39428729 [TBL] [Abstract][Full Text] [Related]
85. Machine Learning Algorithm Helps Identify Non-Diagnosed Prodromal Alzheimer's Disease Patients in the General Population. Uspenskaya-Cadoz O; Alamuri C; Wang L; Yang M; Khinda S; Nigmatullina Y; Cao T; Kayal N; O'Keefe M; Rubel C J Prev Alzheimers Dis; 2019; 6(3):185-191. PubMed ID: 31062833 [TBL] [Abstract][Full Text] [Related]
86. A Machine Learning Model for Risk Stratification of Postdiagnosis Diabetic Ketoacidosis Hospitalization in Pediatric Type 1 Diabetes: Retrospective Study. Subramanian D; Sonabend R; Singh I JMIR Diabetes; 2024 Aug; 9():e53338. PubMed ID: 39110490 [TBL] [Abstract][Full Text] [Related]
87. Learning From Past Respiratory Infections to Predict COVID-19 Outcomes: Retrospective Study. Sang S; Sun R; Coquet J; Carmichael H; Seto T; Hernandez-Boussard T J Med Internet Res; 2021 Feb; 23(2):e23026. PubMed ID: 33534724 [TBL] [Abstract][Full Text] [Related]
88. Predicting the risk of emergency admission with machine learning: Development and validation using linked electronic health records. Rahimian F; Salimi-Khorshidi G; Payberah AH; Tran J; Ayala Solares R; Raimondi F; Nazarzadeh M; Canoy D; Rahimi K PLoS Med; 2018 Nov; 15(11):e1002695. PubMed ID: 30458006 [TBL] [Abstract][Full Text] [Related]
89. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality. Kanwal F; Taylor TJ; Kramer JR; Cao Y; Smith D; Gifford AL; El-Serag HB; Naik AD; Asch SM JAMA Netw Open; 2020 Nov; 3(11):e2023780. PubMed ID: 33141161 [TBL] [Abstract][Full Text] [Related]
90. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease. Huang D; Gong L; Wei C; Wang X; Liang Z Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628 [TBL] [Abstract][Full Text] [Related]
91. Predicting Major Adverse Cardiovascular Events Following Carotid Endarterectomy Using Machine Learning. Li B; Verma R; Beaton D; Tamim H; Hussain MA; Hoballah JJ; Lee DS; Wijeysundera DN; de Mestral C; Mamdani M; Al-Omran M J Am Heart Assoc; 2023 Oct; 12(20):e030508. PubMed ID: 37804197 [TBL] [Abstract][Full Text] [Related]
92. Comparative Effectiveness of Machine Learning Approaches for Predicting Gastrointestinal Bleeds in Patients Receiving Antithrombotic Treatment. Herrin J; Abraham NS; Yao X; Noseworthy PA; Inselman J; Shah ND; Ngufor C JAMA Netw Open; 2021 May; 4(5):e2110703. PubMed ID: 34019087 [TBL] [Abstract][Full Text] [Related]
93. Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction. Zhuang Q; Zhang AY; Cong RSTY; Yang GM; Neo PSH; Tan DS; Chua ML; Tan IB; Wong FY; Eng Hock Ong M; Shao Wei Lam S; Liu N BMC Palliat Care; 2024 May; 23(1):124. PubMed ID: 38769564 [TBL] [Abstract][Full Text] [Related]
94. Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation. Du Z; Yang Y; Zheng J; Li Q; Lin D; Li Y; Fan J; Cheng W; Chen XH; Cai Y JMIR Med Inform; 2020 Jul; 8(7):e17257. PubMed ID: 32628616 [TBL] [Abstract][Full Text] [Related]
95. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage. Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097 [TBL] [Abstract][Full Text] [Related]
96. Using Machine Learning to Predict Dementia from Neuropsychiatric Symptom and Neuroimaging Data. Gill S; Mouches P; Hu S; Rajashekar D; MacMaster FP; Smith EE; Forkert ND; Ismail Z; J Alzheimers Dis; 2020; 75(1):277-288. PubMed ID: 32250302 [TBL] [Abstract][Full Text] [Related]
97. Predicting outcomes following open revascularization for aortoiliac occlusive disease using machine learning. Li B; Verma R; Beaton D; Tamim H; Hussain MA; Hoballah JJ; Lee DS; Wijeysundera DN; de Mestral C; Mamdani M; Al-Omran M J Vasc Surg; 2023 Dec; 78(6):1449-1460.e7. PubMed ID: 37454952 [TBL] [Abstract][Full Text] [Related]
98. The graded multidimensional geometry of phenotypic variation and progression in neurodegenerative syndromes. Ramanan S; Akarca D; Henderson SK; Rouse MA; Allinson K; Patterson K; Rowe JB; Lambon Ralph MA Brain; 2024 Jul; ():. PubMed ID: 39018014 [TBL] [Abstract][Full Text] [Related]
99. Long-term mortality risk stratification of liver transplant recipients: real-time application of deep learning algorithms on longitudinal data. Nitski O; Azhie A; Qazi-Arisar FA; Wang X; Ma S; Lilly L; Watt KD; Levitsky J; Asrani SK; Lee DS; Rubin BB; Bhat M; Wang B Lancet Digit Health; 2021 May; 3(5):e295-e305. PubMed ID: 33858815 [TBL] [Abstract][Full Text] [Related]
100. Interpretable machine learning for predicting 28-day all-cause in-hospital mortality for hypertensive ischemic or hemorrhagic stroke patients in the ICU: a multi-center retrospective cohort study with internal and external cross-validation. Huang J; Chen H; Deng J; Liu X; Shu T; Yin C; Duan M; Fu L; Wang K; Zeng S Front Neurol; 2023; 14():1185447. PubMed ID: 37614971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]