These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38419006)

  • 21. TEAM: efficient two-locus epistasis tests in human genome-wide association study.
    Zhang X; Huang S; Zou F; Wang W
    Bioinformatics; 2010 Jun; 26(12):i217-27. PubMed ID: 20529910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient algorithm to perform multiple testing in epistasis screening.
    Van Lishout F; Mahachie John JM; Gusareva ES; Urrea V; Cleynen I; Théâtre E; Charloteaux B; Calle ML; Wehenkel L; Van Steen K
    BMC Bioinformatics; 2013 Apr; 14():138. PubMed ID: 23617239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure.
    Leem S; Jeong HH; Lee J; Wee K; Sohn KA
    Comput Biol Chem; 2014 Jun; 50():19-28. PubMed ID: 24581733
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinatorial Methods for Epistasis and Dominance.
    Sverdlov S; Thompson E
    J Comput Biol; 2017 Apr; 24(4):267-279. PubMed ID: 27870559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloud computing for detecting high-order genome-wide epistatic interaction via dynamic clustering.
    Guo X; Meng Y; Yu N; Pan Y
    BMC Bioinformatics; 2014 Apr; 15():102. PubMed ID: 24717145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Flexible Computational Framework Using R and Map-Reduce for Permutation Tests of Massive Genetic Analysis of Complex Traits.
    Mahjani B; Toor S; Nettelblad C; Holmgren S
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):381-392. PubMed ID: 26887003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional regression method for whole genome eQTL epistasis analysis with sequencing data.
    Xu K; Jin L; Xiong M
    BMC Genomics; 2017 May; 18(1):385. PubMed ID: 28521784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.
    Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y
    BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epistasis in a model of molecular signal transduction.
    Pumir A; Shraiman B
    PLoS Comput Biol; 2011 May; 7(5):e1001134. PubMed ID: 21589889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. On the evolution of epistasis II: a generalized Wright-Kimura framework.
    Liberman U; Puniyani A; Feldman MW
    Theor Popul Biol; 2007 Mar; 71(2):230-8. PubMed ID: 17141817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competition between recombination and epistasis can cause a transition from allele to genotype selection.
    Neher RA; Shraiman BI
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6866-71. PubMed ID: 19366665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of varying epistasis on the evolution of recombination.
    Kouyos RD; Otto SP; Bonhoeffer S
    Genetics; 2006 Jun; 173(2):589-97. PubMed ID: 16547114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units.
    Kam-Thong T; Czamara D; Tsuda K; Borgwardt K; Lewis CM; Erhardt-Lehmann A; Hemmer B; Rieckmann P; Daake M; Weber F; Wolf C; Ziegler A; Pütz B; Holsboer F; Schölkopf B; Müller-Myhsok B
    Eur J Hum Genet; 2011 Apr; 19(4):465-71. PubMed ID: 21150885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epistasis: obstacle or advantage for mapping complex traits?
    Verhoeven KJ; Casella G; McIntyre LM
    PLoS One; 2010 Aug; 5(8):e12264. PubMed ID: 20865037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detecting epistasis with restricted response patterns in pairs of biallelic loci.
    Wirapati P; Forner K; Delgado-Vega A; Alarcón-Riquelme M; Delorenzi M; Wojcik J
    Ann Hum Genet; 2011 Jan; 75(1):133-45. PubMed ID: 21118193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Genome-Wide Association Analysis Reveals Epistatic Cancellation of Additive Genetic Variance for Root Length in Arabidopsis thaliana.
    Lachowiec J; Shen X; Queitsch C; Carlborg Ö
    PLoS Genet; 2015; 11(9):e1005541. PubMed ID: 26397943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An extension of the Walsh-Hadamard transform to calculate and model epistasis in genetic landscapes of arbitrary shape and complexity.
    Faure AJ; Lehner B; Miró Pina V; Serrano Colome C; Weghorn D
    PLoS Comput Biol; 2024 May; 20(5):e1012132. PubMed ID: 38805561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Epistasis for Flowering Time Using Bayesian Multilocus Estimation in a Barley MAGIC Population.
    Mathew B; Léon J; Sannemann W; Sillanpää MJ
    Genetics; 2018 Feb; 208(2):525-536. PubMed ID: 29254994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.