BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38419048)

  • 1. Engineering styrene biosynthesis: designing a functional trans-cinnamic acid decarboxylase in Pseudomonas.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2024 Feb; 23(1):69. PubMed ID: 38419048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudomonas putida as a platform for the synthesis of aromatic compounds.
    Molina-Santiago C; Cordero BF; Daddaoua A; Udaondo Z; Manzano J; Valdivia M; Segura A; Ramos JL; Duque E
    Microbiology (Reading); 2016 Sep; 162(9):1535-1543. PubMed ID: 27417954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Styrene biosynthesis from glucose by engineered E. coli.
    McKenna R; Nielsen DR
    Metab Eng; 2011 Sep; 13(5):544-54. PubMed ID: 21722749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    J Biosci Bioeng; 2016 Dec; 122(6):730-735. PubMed ID: 27405271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose.
    Nijkamp K; van Luijk N; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2005 Nov; 69(2):170-7. PubMed ID: 15824922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of fragrance 2-phenylethanol from sugars by Pseudomonas putida.
    Godoy P; Udaondo Z; Duque E; Ramos JL
    Biotechnol Biofuels Bioprod; 2024 Apr; 17(1):51. PubMed ID: 38566218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational and combinatorial approaches to engineering styrene production by Saccharomyces cerevisiae.
    McKenna R; Thompson B; Pugh S; Nielsen DR
    Microb Cell Fact; 2014 Aug; 13():123. PubMed ID: 25162943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.
    Richard P; Viljanen K; Penttilä M
    AMB Express; 2015; 5():12. PubMed ID: 25852989
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Yuan J; Lukito BR; Li Z
    ACS Synth Biol; 2019 Aug; 8(8):1801-1808. PubMed ID: 31339686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the susceptibility of Pseudomonas putida to industrially relevant aromatic hydrocarbons that it can synthesize from sugars.
    García-Franco A; Godoy P; Duque E; Ramos JL
    Microb Cell Fact; 2023 Feb; 22(1):22. PubMed ID: 36732770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3.
    O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD
    Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and functional characterization of the styE gene, involved in styrene transport in Pseudomonas putida CA-3.
    Mooney A; O'Leary ND; Dobson AD
    Appl Environ Microbiol; 2006 Feb; 72(2):1302-9. PubMed ID: 16461680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose.
    Nijkamp K; Westerhof RG; Ballerstedt H; de Bont JA; Wery J
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):617-24. PubMed ID: 17111138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescent enzyme-coupled activity assay for phenylalanine ammonia-lyases.
    Moisă ME; Amariei DA; Nagy EZA; Szarvas N; Toșa MI; Paizs C; Bencze LC
    Sci Rep; 2020 Oct; 10(1):18418. PubMed ID: 33116226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding Upon Styrene Biosynthesis to Engineer a Novel Route to 2-Phenylethanol.
    Machas MS; McKenna R; Nielsen DR
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28799719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation.
    Verhoef S; Wierckx N; Westerhof RG; de Winde JH; Ruijssenaars HJ
    Appl Environ Microbiol; 2009 Feb; 75(4):931-6. PubMed ID: 19060171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E.
    Ramos JL; Duque E; Godoy P; Segura A
    J Bacteriol; 1998 Jul; 180(13):3323-9. PubMed ID: 9642183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3.
    Dunn HD; Curtin T; O'riordan MA; Coen P; Kieran PM; Malone DM; O'Connor KE
    FEMS Microbiol Lett; 2005 Aug; 249(2):267-73. PubMed ID: 16002236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Characterization of a Recombinant Zea mays Phenylalanine Ammonia-Lyase (ZmPAL2) and Its Application in trans-Cinnamic Acid Production from L-Phenylalanine.
    Zang Y; Jiang T; Cong Y; Zheng Z; Ouyang J
    Appl Biochem Biotechnol; 2015 Jun; 176(3):924-37. PubMed ID: 25947617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.