These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A novel three-dimensional tubular scaffold prepared from silk fibroin by electrospinning. Zhou J; Cao C; Ma X Int J Biol Macromol; 2009 Dec; 45(5):504-10. PubMed ID: 19772871 [TBL] [Abstract][Full Text] [Related]
23. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]
24. A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: towards in situ tissue-engineered vascular accesses for haemodialysis. van Uden S; Vanerio N; Catto V; Bonandrini B; Tironi M; Figliuzzi M; Remuzzi A; Kock L; Redaelli ACL; Greco FG; Riboldi SA Biomed Mater; 2019 Jan; 14(2):025007. PubMed ID: 30620939 [TBL] [Abstract][Full Text] [Related]
25. Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin. Yamamoto S; Okamoto H; Haga M; Shigematsu K; Miyata T; Watanabe T; Ogawa Y; Takagi Y; Asakura T J Mater Chem B; 2016 Feb; 4(5):938-946. PubMed ID: 32263167 [TBL] [Abstract][Full Text] [Related]
26. Electrospun silk fibroin-based neural scaffold for bridging a long sciatic nerve gap in dogs. Xue C; Zhu H; Tan D; Ren H; Gu X; Zhao Y; Zhang P; Sun Z; Yang Y; Gu J; Gu Y; Gu X J Tissue Eng Regen Med; 2018 Feb; 12(2):e1143-e1153. PubMed ID: 28485084 [TBL] [Abstract][Full Text] [Related]
27. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Zhao J; Zhang Z; Wang S; Sun X; Zhang X; Chen J; Kaplan DL; Jiang X Bone; 2009 Sep; 45(3):517-27. PubMed ID: 19505603 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of Small-Diameter Tubular Grafts for Vascular Tissue Engineering Applications Using Mulberry and Non-mulberry Silk Proteins. Gupta P; Mandal BB Methods Mol Biol; 2022; 2375():125-139. PubMed ID: 34591304 [TBL] [Abstract][Full Text] [Related]
29. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Catto V; Farè S; Cattaneo I; Figliuzzi M; Alessandrino A; Freddi G; Remuzzi A; Tanzi MC Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():101-11. PubMed ID: 26046273 [TBL] [Abstract][Full Text] [Related]
30. Development of a decellularized human amniotic membrane-based electrospun vascular graft capable of rapid remodeling for small-diameter vascular applications. Liu J; Chen D; Zhu X; Liu N; Zhang H; Tang R; Liu Z Acta Biomater; 2022 Oct; 152():144-156. PubMed ID: 36108966 [TBL] [Abstract][Full Text] [Related]
31. Modulation of neo-endothelialization of vascular graft materials by silk fibroin. Zhan C; Xia C; Wang P; Ming P; Zhang S; Chen J; Huang X Biomed Tech (Berl); 2021 Dec; 66(6):573-580. PubMed ID: 34624936 [TBL] [Abstract][Full Text] [Related]
32. A Silk Fibroin/Collagen Nerve Scaffold Seeded with a Co-Culture of Schwann Cells and Adipose-Derived Stem Cells for Sciatic Nerve Regeneration. Xu Y; Zhang Z; Chen X; Li R; Li D; Feng S PLoS One; 2016; 11(1):e0147184. PubMed ID: 26799619 [TBL] [Abstract][Full Text] [Related]
34. Development of Small-Diameter Elastin-Silk Fibroin Vascular Grafts. Tanaka T; Abe Y; Cheng CJ; Tanaka R; Naito A; Asakura T Front Bioeng Biotechnol; 2020; 8():622220. PubMed ID: 33585421 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441 [No Abstract] [Full Text] [Related]
36. Acellular bi-layer silk fibroin scaffolds support functional tissue regeneration in a rat model of onlay esophagoplasty. Algarrahi K; Franck D; Ghezzi CE; Cristofaro V; Yang X; Sullivan MP; Chung YG; Affas S; Jennings R; Kaplan DL; Estrada CR; Mauney JR Biomaterials; 2015 Jun; 53():149-59. PubMed ID: 25890715 [TBL] [Abstract][Full Text] [Related]
37. Insight on the endothelialization of small silk-based tissue-engineered vascular grafts. Cordelle J; Mantero S Int J Artif Organs; 2020 Oct; 43(10):631-644. PubMed ID: 32148174 [TBL] [Abstract][Full Text] [Related]
38. Improved hemocompatibility and endothelialization of vascular grafts by covalent immobilization of sulfated silk fibroin on poly(lactic-co-glycolic acid) scaffolds. Liu H; Li X; Niu X; Zhou G; Li P; Fan Y Biomacromolecules; 2011 Aug; 12(8):2914-24. PubMed ID: 21714569 [TBL] [Abstract][Full Text] [Related]
39. Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Gong X; Liu H; Ding X; Liu M; Li X; Zheng L; Jia X; Zhou G; Zou Y; Li J; Huang X; Fan Y Biomaterials; 2014 Jun; 35(17):4782-91. PubMed ID: 24642194 [TBL] [Abstract][Full Text] [Related]