These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 38419332)

  • 1. Nucleosome spacing controls chromatin spatial structure and accessibility.
    Zülske T; Attou A; Groß L; Hörl D; Harz H; Wedemann G
    Biophys J; 2024 Apr; 123(7):847-857. PubMed ID: 38419332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changing chromatin fiber conformation by nucleosome repositioning.
    Müller O; Kepper N; Schöpflin R; Ettig R; Rippe K; Wedemann G
    Biophys J; 2014 Nov; 107(9):2141-50. PubMed ID: 25418099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleosome positioning and composition modulate in silico chromatin flexibility.
    Clauvelin N; Lo P; Kulaeva OI; Nizovtseva EV; Diaz-Montes J; Zola J; Parashar M; Studitsky VM; Olson WK
    J Phys Condens Matter; 2015 Feb; 27(6):064112. PubMed ID: 25564155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.
    Szerlong HJ; Hansen JC
    Biochem Cell Biol; 2011 Feb; 89(1):24-34. PubMed ID: 21326360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential nucleosome spacing in neurons and glia.
    Clark SC; Chereji RV; Lee PR; Fields RD; Clark DJ
    Neurosci Lett; 2020 Jan; 714():134559. PubMed ID: 31639421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.
    Lo SM; McElroy KA; Francis NJ
    PLoS One; 2012; 7(10):e47162. PubMed ID: 23071745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleosome positioning and spacing: from genome-wide maps to single arrays.
    Baldi S
    Essays Biochem; 2019 Apr; 63(1):5-14. PubMed ID: 31015380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
    Donovan DA; Crandall JG; Truong VN; Vaaler AL; Bailey TB; Dinwiddie D; Banks OG; McKnight LE; McKnight JN
    Elife; 2021 Feb; 10():. PubMed ID: 33576335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleosome Clutches are Regulated by Chromatin Internal Parameters.
    Portillo-Ledesma S; Tsao LH; Wagley M; Lakadamyali M; Cosma MP; Schlick T
    J Mol Biol; 2021 Mar; 433(6):166701. PubMed ID: 33181171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin behavior in living cells: Lessons from single-nucleosome imaging and tracking.
    Ide S; Tamura S; Maeshima K
    Bioessays; 2022 Jul; 44(7):e2200043. PubMed ID: 35661389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are extraordinary nucleosome structures more ordinary than we thought?
    Chong CYY; Gan L
    Chromosoma; 2023 Sep; 132(3):139-152. PubMed ID: 36917245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleosome density shapes kilobase-scale regulation by a mammalian chromatin remodeler.
    Abdulhay NJ; Hsieh LJ; McNally CP; Ostrowski MS; Moore CM; Ketavarapu M; Kasinathan S; Nanda AS; Wu K; Chio US; Zhou Z; Goodarzi H; Narlikar GJ; Ramani V
    Nat Struct Mol Biol; 2023 Oct; 30(10):1571-1581. PubMed ID: 37696956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
    Melters DP; Dalal Y
    J Mol Biol; 2021 Mar; 433(6):166720. PubMed ID: 33221335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone H3 and H4 tails play an important role in nucleosome phase separation.
    Hammonds EF; Harwig MC; Paintsil EA; Tillison EA; Hill RB; Morrison EA
    Biophys Chem; 2022 Apr; 283():106767. PubMed ID: 35158124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome Positioning and Spacing: From Mechanism to Function.
    Singh AK; Mueller-Planitz F
    J Mol Biol; 2021 Mar; 433(6):166847. PubMed ID: 33539878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the multiplex folding of nucleosome chains in higher order chromatin.
    Grigoryev SA; Schubert M
    Essays Biochem; 2019 Apr; 63(1):109-121. PubMed ID: 31015386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo.
    Ocampo J; Chereji RV; Eriksson PR; Clark DJ
    Nucleic Acids Res; 2016 Jun; 44(10):4625-35. PubMed ID: 26861626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linker histones: novel insights into structure-specific recognition of the nucleosome.
    Cutter AR; Hayes JJ
    Biochem Cell Biol; 2017 Apr; 95(2):171-178. PubMed ID: 28177778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling and Repositioning of Nucleosomes in Nucleosomal Arrays.
    Ludwigsen J; Hepp N; Klinker H; Pfennig S; Mueller-Planitz F
    Methods Mol Biol; 2018; 1805():349-370. PubMed ID: 29971727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global histone protein surface accessibility in yeast indicates a uniformly loosely packed genome with canonical nucleosomes.
    Marr LT; Ocampo J; Clark DJ; Hayes JJ
    Epigenetics Chromatin; 2021 Jan; 14(1):5. PubMed ID: 33430969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.