BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38419371)

  • 1. Concentration-Driven Evolution of Adaptive Artificial Ion Channels or Nanopores with Specific Anticancer Activities.
    Chen Z; Xie X; Jia C; Zhong Q; Zhang Q; Luo D; Cao Y; Mu Y; Ren C
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202318811. PubMed ID: 38419371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Covalently Stapled H
    Zhong Q; Cao Y; Xie X; Wu Y; Chen Z; Zhang Q; Jia C; Wu Z; Xin P; Yan X; Zeng Z; Ren C
    Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202314666. PubMed ID: 37864456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer.
    Liu HN; Guo NN; Guo WW; Huang-Fu MY; Vakili MR; Chen JJ; Xu WH; Wei QC; Han M; Lavasanifar A; Gao JQ
    Acta Pharmacol Sin; 2018 Oct; 39(10):1681-1692. PubMed ID: 29849132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Targeted Doxorubicin-Triphenylphosphonium Delivered by Hyaluronic Acid Modified and pH Responsive Nanocarriers to Breast Tumor: in Vitro and in Vivo Studies.
    Liu HN; Guo NN; Wang TT; Guo WW; Lin MT; Huang-Fu MY; Vakili MR; Xu WH; Chen JJ; Wei QC; Han M; Lavasanifar A; Gao JQ
    Mol Pharm; 2018 Mar; 15(3):882-891. PubMed ID: 29357260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triphenylphosphonium-conjugated glycol chitosan microspheres for mitochondria-targeted drug delivery.
    Lee YH; Park HI; Chang WS; Choi JS
    Int J Biol Macromol; 2021 Jan; 167():35-45. PubMed ID: 33227331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells.
    Han M; Vakili MR; Soleymani Abyaneh H; Molavi O; Lai R; Lavasanifar A
    Mol Pharm; 2014 Aug; 11(8):2640-9. PubMed ID: 24811541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol-stabilized membrane-active nanopores with anticancer activities.
    Shen J; Gu Y; Ke L; Zhang Q; Cao Y; Lin Y; Wu Z; Wu C; Mu Y; Wu YL; Ren C; Zeng H
    Nat Commun; 2022 Oct; 13(1):5985. PubMed ID: 36216956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Framework Membrane Nanopores as Biomimetic Photoresponsive Ion Channels and Photodriven Ion Pumps.
    Jiang Y; Ma W; Qiao Y; Xue Y; Lu J; Gao J; Liu N; Wu F; Yu P; Jiang L; Mao L
    Angew Chem Int Ed Engl; 2020 Jul; 59(31):12795-12799. PubMed ID: 32343466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation versus Self-Aggregation toward Highly Selective Artificial K
    Barboiu M
    Acc Chem Res; 2018 Nov; 51(11):2711-2718. PubMed ID: 30346726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-Blockage Mesoporous Anticancer Nanoparticles Based on ROS-Responsive Wetting Behavior of Nanopores.
    Cheng Y; Jiao X; Xu T; Wang W; Cao Y; Wen Y; Zhang X
    Small; 2017 Oct; 13(40):. PubMed ID: 28841777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Inversion and Calcium Gating in Mixtures of Ions in Nanopores.
    Lin K; Lin CY; Polster JW; Chen Y; Siwy ZS
    J Am Chem Soc; 2020 Feb; 142(6):2925-2934. PubMed ID: 31964139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity.
    Theodossiou TA; Sideratou Z; Katsarou ME; Tsiourvas D
    Pharm Res; 2013 Nov; 30(11):2832-42. PubMed ID: 23921486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-Based Analysis of Gramicidin A Nanopores Enabling Detection of Small Molecules with Picomolar Sensitivity.
    Kim YH; Hang L; Cifelli JL; Sept D; Mayer M; Yang J
    Anal Chem; 2018 Feb; 90(3):1635-1642. PubMed ID: 29266927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A halogen bond-mediated highly active artificial chloride channel with high anticancer activity.
    Ren C; Ding X; Roy A; Shen J; Zhou S; Chen F; Yau Li SF; Ren H; Yang YY; Zeng H
    Chem Sci; 2018 May; 9(17):4044-4051. PubMed ID: 29780533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Sodium Transmembrane Permeation through Helically Folded Nanopores with Natural Channel-Like Ion Selectivity.
    Zhang L; Tian J; Lin Z; Dong Z
    J Am Chem Soc; 2024 Mar; 146(12):8500-8507. PubMed ID: 38483183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Single-Chain-Heteropolymer-Derived Transmembrane Ion Channels with High K
    Yan T; Liu S; Li C; Xu J; Yu S; Wang T; Sun H; Liu J
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202210214. PubMed ID: 36039469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na(+) and K(+).
    He Z; Zhou J; Lu X; Corry B
    ACS Nano; 2013 Nov; 7(11):10148-57. PubMed ID: 24151957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nontoxic Artificial Chloride Channel Formation in Epithelial Cells by Isophthalic Acid-Based Small Molecules.
    Mondal A; Barik GK; Sarkar S; Mondal D; Ahmad M; Vijayakanth T; Mondal J; Santra MK; Talukdar P
    Chemistry; 2023 Feb; 29(10):e202202887. PubMed ID: 36399427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.